Trypanosoma brucei spp. develop into mammalian-infectious metacyclic trypomastigotes inside tsetse salivary glands. Besides acquiring a variant surface glycoprotein (VSG) coat, little is known about the metacyclic expression of invariant surface antigens.
View Article and Find Full Text PDFIncidence of visceral leishmaniasis (VL) in the Indian subcontinent (ISC) has declined by more than 95% since initiation of the elimination program in 2005. As the ISC transitions to the postelimination surveillance phase, an accurate measurement of human-vector contact is needed to assure long-term success. To develop this tool, we identified PagSP02 and PagSP06 from saliva of Phlebotomus argentipes, the vector of Leishmania donovani in the ISC, as immunodominant proteins in humans.
View Article and Find Full Text PDFAfrican sleeping sickness is caused by Trypanosoma brucei, a parasite transmitted by the bite of a tsetse fly. Trypanosome infection induces a severe transcriptional downregulation of tsetse genes encoding for salivary proteins, which reduces its anti-hemostatic and anti-clotting properties. To better understand trypanosome transmission and the possible role of glycans in insect bloodfeeding, we characterized the N-glycome of tsetse saliva glycoproteins.
View Article and Find Full Text PDFTsetse transmit African trypanosomiasis, which is a disease fatal to both humans and animals. A vaccine to protect against this disease does not exist so transmission control relies on eliminating tsetse populations. Although neurotoxic insecticides are the gold standard for insect control, they negatively impact the environment and reduce populations of insect pollinator species.
View Article and Find Full Text PDFThe peritrophic matrix of blood-feeding insects is a chitinous structure that forms a protective barrier against oral pathogens and abrasive particles. Tsetse flies transmit Trypanosoma brucei, which is the parasite that causes human sleeping sickness and is also partially responsible for animal trypanosomiasis in Sub-Saharan Africa. For this parasite to establish an infection in flies, it must first colonize the area between the peritrophic matrix and gut epithelium called the ectoperitrophic space.
View Article and Find Full Text PDFBackground: Tsetse flies (Glossina sp.) are the vectors of human and animal trypanosomiasis throughout sub-Saharan Africa. Tsetse flies are distinguished from other Diptera by unique adaptations, including lactation and the birthing of live young (obligate viviparity), a vertebrate blood-specific diet by both sexes, and obligate bacterial symbiosis.
View Article and Find Full Text PDFFilarial nematodes possess glutathione transferases (GSTs), ubiquitous enzymes with the potential to detoxify xenobiotic and endogenous substrates, and modulate the host immune system, which may aid worm infection establishment, maintenance and survival in the host. Here we have identified and characterized a σ class glycosylated GST (OoGST1), from the cattle-infective filarial nematode Onchocerca ochengi, which is homologous (99% amino acid identity) with an immunodominant GST and potential vaccine candidate from the human parasite, O. volvulus, (OvGST1b).
View Article and Find Full Text PDFTsetse flies are the principal insect vectors of African -sleeping sickness in humans and Nagana in cattle. One of the tsetse fly species, , is host to the parasite, , a major cause of African trypanosomiasis. Precise details of the life cycle have yet to be established, but the parasite life cycle involves crossing the insect peritrophic matrix (PM).
View Article and Find Full Text PDFBackground: Tsetse flies serve as biological vectors for several species of African trypanosomes. In order to survive, proliferate and establish a midgut infection, trypanosomes must cross the tsetse fly peritrophic matrix (PM), which is an acellular gut lining surrounding the blood meal. Crossing of this multi-layered structure occurs at least twice during parasite migration and development, but the mechanism of how trypanosomes do so is not understood.
View Article and Find Full Text PDFSurvival in and colonization of the tsetse fly midgut are essential steps in the transmission of many species of African trypanosomes. In the fly, bloodstream trypanosomes transform into the procyclic stage within the gut lumen and later migrate to the ectoperitrophic space, where they multiply, establishing an infection. Progression of the parasite infection in the fly depends on factors inherent to the biology of trypanosomes, tsetse, and the bloodmeal.
View Article and Find Full Text PDF