Publications by authors named "Claessen N"

Background And Hypothesis: Kidney macrophage infiltration is a histological hallmark of vasculitic lesions and is strongly linked to disease activity in anti-neutrophil cytoplasmic antibodies (ANCA)-associated glomerulonephritis (AGN). The precise mechanisms by which kidney macrophages influence local inflammation and long-term damage remain largely unknown.

Methods: Here, we investigate kidney macrophage diversity using single-cell transcriptome analysis of 25 485 freshly retrieved unfrozen, high-quality kidney CD45+ immune cells from five AGN patients during active disease, a lupus nephritis and nephrectomy control.

View Article and Find Full Text PDF

Chronic kidney disease (CKD) has emerged as a significant global public health concern. Recent epidemiological studies have highlighted the link between exposure to fine particulate matter (PM) and a decline in renal function. PM exerts harmful effects on various organs through oxidative stress and inflammation.

View Article and Find Full Text PDF

Background: Chronic kidney disease often leads to kidney dysfunction due to renal fibrosis, regardless of the initial cause of kidney damage. Macrophages are crucial players in the progression of renal fibrosis as they stimulate inflammation, activate fibroblasts, and contribute to extracellular matrix deposition, influenced by their metabolic state. Nucleotide-binding domain and LRR-containing protein X (NLRX1) is an innate immune receptor independent of inflammasomes and is found in mitochondria, and it plays a role in immune responses and cell metabolism.

View Article and Find Full Text PDF

Levamisole (LMS) is a small molecule used in the treatment of idiopathic nephrotic syndrome (INS). The pathogenesis of INS remains unknown, but evidence points toward an immunological basis of the disease. Recently, LMS has been shown to increase the relapse-free survival in INS patients.

View Article and Find Full Text PDF

The lysosomal storage disease Niemann-Pick type C (NPC) is caused by impaired cholesterol efflux from lysosomes, which is accompanied by secondary lysosomal accumulation of sphingomyelin and glucosylceramide (GlcCer). Similar to Gaucher disease (GD), patients deficient in glucocerebrosidase (GCase) degrading GlcCer, NPC patients show an elevated glucosylsphingosine and glucosylated cholesterol. In livers of mice lacking the lysosomal cholesterol efflux transporter NPC1, we investigated the expression of established biomarkers of lipid-laden macrophages of GD patients, their GCase status, and content on the cytosol facing glucosylceramidase GBA2 and lysosomal integral membrane protein type B (LIMP2), a transporter of newly formed GCase to lysosomes.

View Article and Find Full Text PDF

Diabetic nephropathy (DN) is a major complication of diabetes and is associated with high risk for cardiovascular mortality, which is partially related to elevated platelet activity. Platelets are also active players in inflammation and fibrosis. In this study, we examine the effect of ticagrelor-induced platelet inhibition on the development of DN.

View Article and Find Full Text PDF

Type 1 diabetes patients are more prone to have hypertension than healthy individuals, possibly mediated by increased blood pressure (BP) sensitivity to high salt intake. The classical concept proposes that the kidney is central in salt-mediated BP rises, by insufficient renal sodium excretion leading to extracellular fluid volume expansion. Recent animal-derived findings, however, propose a causal role for disturbance of macrophage-mediated lymphangiogenesis.

View Article and Find Full Text PDF

Obesity has become a worldwide health crisis and is associated with a plethora of comorbidities. The multi-organ effects of obesity have been linked to ectopic lipid accumulation. Thus, there is an urgent need to tackle the obesity crisis by developing effective lipid-lowering therapies.

View Article and Find Full Text PDF

Inflammation may play a role in the link between high salt intake and its deleterious consequences. However, it is unknown whether salt can induce proinflammatory priming of monocytes and macrophages in humans. We investigated the effects of salt on monocytes and macrophages in vitro and in vivo by performing a randomized crossover trial in which 11 healthy human subjects adhered to a 2-week low-salt and high-salt diet.

View Article and Find Full Text PDF

The pathophysiology of renal ischemia/reperfusion (I/R) injury is characterized by excessive activation of inflammation and coagulation processes followed by abnormal renal tissue repair, resulting in renal injury and function loss. Platelets are important actors in these processes, however to what extent platelets contribute to the pathophysiology of renal I/R injury still needs to be elucidated. In the current study, we treated wild-type mice with a platelet depleting antibody, which caused thrombocytopenia.

View Article and Find Full Text PDF

Long-term sequelae of acute kidney injury (AKI) are associated with incomplete recovery of renal function and the development of chronic kidney disease (CKD), which can be mediated by aberrant innate immune activation, mitochondrial pathology, and accumulation of senescent tubular epithelial cells (TECs). Herein, we show that the innate immune receptor Triggering receptor expressed on myeloid cells-1 (TREM-1) links mitochondrial metabolism to tubular epithelial senescence. TREM-1 is expressed by inflammatory and epithelial cells, both players in renal repair after ischemia/reperfusion (IR)-induced AKI.

View Article and Find Full Text PDF

Diabetic nephropathy (DN) is a microvascular complication of diabetes mellitus that results in both tubular and glomerular injury. Low-grade inflammation and oxidative stress are two mechanisms known to drive the progression of DN. Nucleotide-binding leucine-rich repeat containing family member X1 (NLRX1) is an innate immune receptor, uniquely located in mitochondria, that has been found to regulate inflammatory responses and to dampen renal oxidative stress by regulating oxidative phosphorylation.

View Article and Find Full Text PDF

Calcineurin inhibitor Tacrolimus, is a potent immunosuppressive drug widely used in order to prevent acute graft rejection. Urinary tract infection (UTI) is the most frequent infectious complication in renal transplant patients and long-term use of Tacrolimus might be involved in higher susceptibility to bacterial infections. It remains largely unknown how Tacrolimus affects the host innate immune response against lower and upper UTI.

View Article and Find Full Text PDF

Background: Ischaemia-reperfusion (IR) injury is an important determinant of delayed graft function (DGF) affecting allograft function. Mitochondrial DNA (mtDNA) is released upon cell death and platelet activation into the extracellular environment and has been suggested to be a biomarker in several diseases. Whether extracellular mtDNA accumulates in plasma and/or urine upon renal IR and predisposes DGF is unknown.

View Article and Find Full Text PDF

Obesity and dyslipidaemia are features of the metabolic syndrome and risk factors for chronic kidney disease. The cellular mechanisms connecting metabolic syndrome with chronic kidney disease onset and progression remain largely unclear. We show that proximal tubular epithelium is a target site for lipid deposition upon overnutrition with a cholesterol-rich Western-type diet.

View Article and Find Full Text PDF

Despite advances in our understanding of the mechanisms underlying the progression of chronic kidney disease and the development of fibrosis, only limited efficacious therapies exist. The calcium binding protein S100A8/A9 is a damage-associated molecular pattern which can activate Toll-like receptor (TLR)-4 or receptor for advanced glycation end-products (RAGE). Activation of these receptors is involved in the progression of renal fibrosis; however, the role of S100A8/A9 herein remains unknown.

View Article and Find Full Text PDF

Background: Chronic kidney disease (CKD) is characterized by sustained tissue damage and ongoing tubulo-interstitial inflammation and fibrosis. Pattern recognition receptors (PRRs) including Toll-like receptors (TLRs) and NOD-like receptors (NLRs) can sense endogenous ligands released upon tissue damage, leading to sterile inflammation and eventually irreversible kidney disease. It is known that NOD1 and NOD2 contribute to the pathogenesis of various inflammatory diseases, including acute kidney injury.

View Article and Find Full Text PDF

NOD-like receptor (NLR)X1 (NLRX1) is an ubiquitously expressed inflammasome-independent NLR that is uniquely localized in mitochondria with as yet unknown effects on metabolic diseases. Here, we report that NLRX1 is essential in regulating cellular metabolism in non-immune parenchymal hepatocytes by decreasing mitochondrial fatty acid-dependent oxidative phosphorylation (OXPHOS) and promoting glycolysis. NLRX1 loss in mice has a profound impact on the prevention of diet-induced metabolic syndrome parameters, non-alcoholic fatty liver disease (NAFLD) progression, and renal dysfunction.

View Article and Find Full Text PDF

Background: BK virus nephropathy (BKPyVN) is a major complication after renal transplantation. Little is known about the intra renal immune response during BKPyVN. The role of macrophages remains elusive.

View Article and Find Full Text PDF

Aims: The technique used for classification of membranoproliferative glomerulonephritis (MPGN) has been changed from an electron microscopy-based to an immunofluorescence (IF)-based semiquantitative technique with immunoperoxidase (IP) staining as a backup option when IF is not possible. Since data on that matter is lacking, our aims were to study the interobserver variability, the correlation and the reclassification of MPGN based on these two techniques.

Methods And Results: We retrospectively analysed cases of type 1 MPGN.

View Article and Find Full Text PDF

TAM receptors (Tyro3, Axl, and Mer) have been implicated in innate immunity. Circulating TAM receptor soluble forms (sTyro3, sAxl, sMer) are related to autoimmune disorders. We investigated TAM and their ligand protein S in patients with diabetes.

View Article and Find Full Text PDF

Mitochondrial dysfunction is the most prominent source of oxidative stress in acute and chronic kidney disease. NLRX1 is a receptor of the innate immune system that is ubiquitously expressed and localized in mitochondria. We investigated whether NLRX1 may act at the interface of metabolism and innate immunity in a model of oxidative stress.

View Article and Find Full Text PDF

The collateral effects of obesity/metabolic syndrome include inflammation and renal function decline. As renal disease in obesity can occur independently of hypertension and diabetes, other yet undefined causal pathological pathways must be present. Our study elucidate novel pathological pathways of metabolic renal injury through LDL-induced lipotoxicity and metainflammation.

View Article and Find Full Text PDF

Renal ischemia reperfusion (IR)-injury induces activation of innate immune response which sustains renal injury and contributes to the development of delayed graft function (DGF). Triggering receptor expressed on myeloid cells-1 (TREM-1) is a pro-inflammatory evolutionary conserved pattern recognition receptor expressed on a variety of innate immune cells. TREM-1 expression increases following acute and chronic renal injury.

View Article and Find Full Text PDF