The expression of mitochondrial genes is regulated in response to the metabolic needs of different cell types, but the basic mechanisms underlying this process are still poorly understood. In this Review, we describe how different layers of regulation cooperate to fine tune initiation of both mitochondrial DNA (mtDNA) transcription and replication in human cells. We discuss our current understanding of the molecular mechanisms that drive and regulate transcription initiation from mtDNA promoters, and how the packaging of mtDNA into nucleoids can control the number of mtDNA molecules available for both transcription and replication.
View Article and Find Full Text PDFTopoisomerase 3α (TOP3A) is an enzyme that removes torsional strain and interlinks between DNA molecules. TOP3A localises to both the nucleus and mitochondria, with the two isoforms playing specialised roles in DNA recombination and replication respectively. Pathogenic variants in TOP3A can cause a disorder similar to Bloom syndrome, which results from bi-allelic pathogenic variants in BLM, encoding a nuclear-binding partner of TOP3A.
View Article and Find Full Text PDFMutations in the mitochondrial or nuclear genomes are associated with a diverse group of human disorders characterized by impaired mitochondrial respiration. Within this group, an increasing number of mutations have been identified in nuclear genes involved in mitochondrial RNA biology. The TEFM gene encodes the mitochondrial transcription elongation factor responsible for enhancing the processivity of mitochondrial RNA polymerase, POLRMT.
View Article and Find Full Text PDFThe human mitochondrial genome must be replicated and expressed in a timely manner to maintain energy metabolism and supply cells with adequate levels of adenosine triphosphate. Central to this process is the idea that replication primers and gene products both arise via transcription from a single light strand promoter (LSP) such that primer formation can influence gene expression, with no consensus as to how this is regulated. Here, we report the discovery of a second light strand promoter (LSP2) in humans, with features characteristic of a bona fide mitochondrial promoter.
View Article and Find Full Text PDFStress granules (SGs) are non-membranous organelles facilitating stress responses and linking the pathology of age-related diseases. In a genome-wide imaging-based phenomic screen, we identify Pab1 co-localizing proteins under 2-deoxy-D-glucose (2-DG) induced stress in Saccharomyces cerevisiae. We find that deletion of one of the Pab1 co-localizing proteins, Lsm7, leads to a significant decrease in SG formation.
View Article and Find Full Text PDFThe mitochondrial genome encodes 13 components of the oxidative phosphorylation system, and altered mitochondrial transcription drives various human pathologies. A polyadenylated, non-coding RNA molecule known as 7S RNA is transcribed from a region immediately downstream of the light strand promoter in mammalian cells, and its levels change rapidly in response to physiological conditions. Here, we report that 7S RNA has a regulatory function, as it controls levels of mitochondrial transcription both in vitro and in cultured human cells.
View Article and Find Full Text PDFHuman mitochondria lack ribonucleotide excision repair pathways, causing misincorporated ribonucleotides (rNMPs) to remain embedded in the mitochondrial genome. Previous studies have demonstrated that human mitochondrial DNA polymerase γ can bypass a single rNMP, but that longer stretches of rNMPs present an obstacle to mitochondrial DNA replication. Whether embedded rNMPs also affect mitochondrial transcription has not been addressed.
View Article and Find Full Text PDFThe recently emerged SARS-CoV-2 Omicron variant encodes 37 amino acid substitutions in the spike protein, 15 of which are in the receptor-binding domain (RBD), thereby raising concerns about the effectiveness of available vaccines and antibody-based therapeutics. Here we show that the Omicron RBD binds to human ACE2 with enhanced affinity, relative to the Wuhan-Hu-1 RBD, and binds to mouse ACE2. Marked reductions in neutralizing activity were observed against Omicron compared to the ancestral pseudovirus in plasma from convalescent individuals and from individuals who had been vaccinated against SARS-CoV-2, but this loss was less pronounced after a third dose of vaccine.
View Article and Find Full Text PDFThe recently emerged SARS-CoV-2 Omicron variant harbors 37 amino acid substitutions in the spike (S) protein, 15 of which are in the receptor-binding domain (RBD), thereby raising concerns about the effectiveness of available vaccines and antibody therapeutics. Here, we show that the Omicron RBD binds to human ACE2 with enhanced affinity relative to the Wuhan-Hu-1 RBD and acquires binding to mouse ACE2. Severe reductions of plasma neutralizing activity were observed against Omicron compared to the ancestral pseudovirus for vaccinated and convalescent individuals.
View Article and Find Full Text PDFWe report a role for the mitochondrial single-stranded DNA binding protein (mtSSB) in regulating mitochondrial DNA (mtDNA) replication initiation in mammalian mitochondria. Transcription from the light-strand promoter (LSP) is required both for gene expression and for generating the RNA primers needed for initiation of mtDNA synthesis. In the absence of mtSSB, transcription from LSP is strongly up-regulated, but no replication primers are formed.
View Article and Find Full Text PDFWhile >300 disease-causing variants have been identified in the mitochondrial DNA (mtDNA) polymerase γ, no mitochondrial phenotypes have been associated with POLRMT, the RNA polymerase responsible for transcription of the mitochondrial genome. Here, we characterise the clinical and molecular nature of POLRMT variants in eight individuals from seven unrelated families. Patients present with global developmental delay, hypotonia, short stature, and speech/intellectual disability in childhood; one subject displayed an indolent progressive external ophthalmoplegia phenotype.
View Article and Find Full Text PDFAltered expression of mitochondrial DNA (mtDNA) occurs in ageing and a range of human pathologies (for example, inborn errors of metabolism, neurodegeneration and cancer). Here we describe first-in-class specific inhibitors of mitochondrial transcription (IMTs) that target the human mitochondrial RNA polymerase (POLRMT), which is essential for biogenesis of the oxidative phosphorylation (OXPHOS) system. The IMTs efficiently impair mtDNA transcription in a reconstituted recombinant system and cause a dose-dependent inhibition of mtDNA expression and OXPHOS in cell lines.
View Article and Find Full Text PDFDeletions and duplications in mitochondrial DNA (mtDNA) cause mitochondrial disease and accumulate in conditions such as cancer and age-related disorders, but validated high-throughput methodology that can readily detect and discriminate between these two types of events is lacking. Here we establish a computational method, MitoSAlt, for accurate identification, quantification and visualization of mtDNA deletions and duplications from genomic sequencing data. Our method was tested on simulated sequencing reads and human patient samples with single deletions and duplications to verify its accuracy.
View Article and Find Full Text PDFCrit Rev Biochem Mol Biol
December 2020
Mammalian mitochondria contain multiple copies of a circular, double-stranded DNA genome (mtDNA) that codes for subunits of the oxidative phosphorylation machinery. Mutations in mtDNA cause a number of rare, human disorders and are also associated with more common conditions, such as neurodegeneration and biological aging. In this review, we discuss our current understanding of mtDNA replication in mammalian cells and how this process is regulated.
View Article and Find Full Text PDFAutonomous replication and segregation of mitochondrial DNA (mtDNA) creates the potential for evolutionary conflict driven by emergence of haplotypes under positive selection for 'selfish' traits, such as replicative advantage. However, few cases of this phenomenon arising within natural populations have been described. Here, we survey the frequency of mtDNA horizontal transfer within the canine transmissible venereal tumour (CTVT), a contagious cancer clone that occasionally acquires mtDNA from its hosts.
View Article and Find Full Text PDFAlterations in epigenetic silencing have been associated with ageing and tumour formation. Although substantial efforts have been made towards understanding the mechanisms of gene silencing, novel regulators in this process remain to be identified. To systematically search for components governing epigenetic silencing, we developed a genome-wide silencing screen for yeast (Saccharomyces cerevisiae) silent mating type locus HMR.
View Article and Find Full Text PDFconstitutes a popular eukaryal model for research on mitochondrial physiology. Being Crabtree-positive, this yeast has evolved the ability to ferment glucose to ethanol and respire ethanol once glucose is consumed. Its transition phase from fermentative to respiratory metabolism, known as the diauxic shift, is reflected by dramatic rearrangements of mitochondrial function and structure.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFOligoribonucleases are conserved enzymes that degrade short RNA molecules of up to 5 nt in length and are assumed to constitute the final stage of RNA turnover. Here we demonstrate that REXO2 is a specialized dinucleotide-degrading enzyme that shows no preference between RNA and DNA dinucleotide substrates. A heart- and skeletal-muscle-specific knockout mouse displays elevated dinucleotide levels and alterations in gene expression patterns indicative of aberrant dinucleotide-primed transcription initiation.
View Article and Find Full Text PDFRegulation of replication and expression of mitochondrial DNA (mtDNA) is essential for cellular energy conversion via oxidative phosphorylation. The mitochondrial transcription elongation factor (TEFM) has been proposed to regulate the switch between transcription termination for replication primer formation and processive, near genome-length transcription for mtDNA gene expression. Here, we report that is essential for mouse embryogenesis and that levels of promoter-distal mitochondrial transcripts are drastically reduced in conditional -knockout hearts.
View Article and Find Full Text PDFMitochondrial DNA (mtDNA) deletions are associated with mitochondrial disease, and also accumulate during normal human ageing. The mechanisms underlying mtDNA deletions remain unknown although several models have been proposed. Here we use deep sequencing to characterize abundant mtDNA deletions in patients with mutations in mitochondrial DNA replication factors, and show that these have distinct directionality and repeat characteristics.
View Article and Find Full Text PDFHuman mitochondrial DNA (mtDNA) replication is first initiated at the origin of H-strand replication. The initiation depends on RNA primers generated by transcription from an upstream promoter (LSP). Here we reconstitute this process in vitro using purified transcription and replication factors.
View Article and Find Full Text PDFCells contain thousands of copies of the mitochondrial genome. These genomes are distributed within the tubular mitochondrial network, which is itself spread across the cytosol of the cell. Mitochondrial DNA (mtDNA) replication occurs throughout the cell cycle and ensures that cells maintain a sufficient number of mtDNA copies.
View Article and Find Full Text PDF