Publications by authors named "Claes Fryklund"

Adipocyte dysfunction is a hallmark of systemic insulin resistance. Insulin-responsive glucose transporter 4 (GLUT4) is downregulated in the insulin resistant state, and cellular insulin responsiveness varies depending on fat depot origin and degree of adipose expansion. Here, we have resolved factors limiting cellular insulin responsiveness, by examining adipocyte function and traits related to glucose transport at the cellular level.

View Article and Find Full Text PDF

Background: Metabolic alterations contribute to disease onset and prognosis of Huntington's disease (HD). Weight loss in the R6/2 mouse model of HD is a consistent feature, with onset in mid-to-late stage of disease.

Objective: In the present study, we aimed to investigate molecular and functional changes in white adipose tissue (WAT) that occur at weight loss in R6/2 mice.

View Article and Find Full Text PDF

Adipocyte dysfunction is a crucial driver of insulin resistance and type 2 diabetes. We identified EH domain-containing protein 2 (EHD2) as one of the most highly upregulated genes at the early stage of adipose-tissue expansion. EHD2 is a dynamin-related ATPase influencing several cellular processes, including membrane recycling, caveolae dynamics, and lipid metabolism.

View Article and Find Full Text PDF

Objective: Salt-inducible kinase 2 (SIK2) is abundantly expressed in adipocytes and downregulated in adipose tissue from individuals with obesity or insulin resistance. The main aims of this work were to investigate the involvement of SIKs in the regulation of glucose uptake in primary mature human adipocytes and to identify mechanisms underlying this regulation.

Methods: Primary mature adipocytes were isolated from human, rat, or mouse adipose tissue and treated with pan-SIK inhibitors.

View Article and Find Full Text PDF

During inflammation, cellular glucose uptake and glycolysis are upregulated to meet an increased energy demand. For example, keratinocyte glycolysis is essential for progression of psoriasis. Therefore, understanding the regulation of glucose metabolism in keratinocytes is of importance.

View Article and Find Full Text PDF

To accommodate surplus energy, the adipose tissue expands by increasing adipocyte size (hypertrophy) and number (hyperplasia). The presence of hypertrophic adipocytes is a key characteristic of adipose tissue dysfunction. High-fat diet (HFD) fed C57BL/6J mice are a commonly used model to study obesity and obesity-related complications.

View Article and Find Full Text PDF

Purpose: Previous studies have shown that at a similar body mass index, Middle Eastern immigrants are more insulin resistant and at higher risk for type 2 diabetes (T2D) than native Europeans. Insulin resistance is strongly associated with disturbed fat metabolism and cardiovascular disease (CVD). However, fat metabolism is poorly investigated comparing Middle Eastern and European ethnicities.

View Article and Find Full Text PDF

Aims: To accommodate surplus energy, adipose tissue expands by increasing both adipose cell size (hypertrophy) and cell number (hyperplasia). Enlarged, hypertrophic adipocytes are known to have reduced insulin response and impaired glucose transport, which negatively influence whole-body glucose homeostasis. Rosiglitazone is a peroxisome proliferator-activated receptor gamma (PPARγ) agonist, known to stimulate hyperplasia and to efficiently improve insulin sensitivity.

View Article and Find Full Text PDF

Lipid uptake can be facilitated caveolae, specific plasma membrane invaginations abundantly expressed in adipocytes. The dynamin-related protein EH domain-containing 2 (EHD2) stabilizes caveolae at the cell surface. Here, we have examined the importance of EHD2 for lipid handling using primary adipocytes isolated from EHD2 knockout ( ) C57BL6/N mice.

View Article and Find Full Text PDF

Adipose tissue plays a major role in regulating whole-body energy metabolism. While the biochemical processes regulating storage and release of excess energy are well known, the temporal organization of these events is much less defined. In this study, we have characterized the presence of small surface-associated lipid droplets, distinct from the central droplet, in primary human adipocytes.

View Article and Find Full Text PDF

Obesity is the main risk factor behind insulin resistance and type 2 diabetes. Still, the mechanism behind adipocyte dysfunction is not yet resolved. Recently, we reported that rapid actin remodeling correlates with adipose cell size changes after short-term overfeeding.

View Article and Find Full Text PDF

Diets enriched in sucrose severely impair metabolic regulation and are associated with obesity, insulin resistance and glucose intolerance. In the current study, we investigated the effect of 4 weeks high-sucrose diet (HSD) feeding in C57BL6/J mice, with specific focus on adipocyte function. Mice fed HSD had slightly increased adipose tissue mass but displayed similar hepatic triglycerides, glucose and insulin levels, and glucose clearance capacity as chow-fed mice.

View Article and Find Full Text PDF

Adipose tissue plays a major role in regulating whole-body insulin sensitivity and energy metabolism. To accommodate surplus energy, the tissue rapidly expands by increasing adipose cell size (hypertrophy) and cell number (hyperplasia). Previous studies have shown that enlarged, hypertrophic adipocytes are less responsive to insulin, and that adipocyte size could serve as a predictor for the development of type 2 diabetes.

View Article and Find Full Text PDF

Adipocytes play a central role in energy balance, and dysfunctional adipose tissue severely affects systemic energy homeostasis. The ATPase EH domain-containing 2 (EHD2) has previously been shown to regulate caveolae, plasma membrane-specific domains that are involved in lipid uptake and signal transduction. Here, we investigated the role of EHD2 in adipocyte function.

View Article and Find Full Text PDF

Serotonin (5-HT) is a biogenic monoamine that functions both as a neurotransmitter and a circulating hormone. Recently, the metabolic effects of 5-HT have gained interest and peripheral 5-HT has been proposed to influence lipid metabolism in various ways. Here, we investigated the metabolic effects of 5-HT in isolated, primary rat adipose cells.

View Article and Find Full Text PDF