Carbon Dots (CDs), fabricated by hydrothermal bottom-up synthesis, are complex materials, whose optical properties are influenced by multiple factors. The presence of domains of conjugated sp carbon, which are formed upon carbonization of precursors at high temperature; nitrogen doping; and as recently shown, the presence of molecular fluorophores, are contributing to the emission of such CDs. We conducted a series of syntheses, each designed with specific precursors and reaction conditions that reveal the contribution of the above-mentioned factors.
View Article and Find Full Text PDFMost of the present-day down-conversion white light-emitting devices (WLEDs) utilize rare-earth elements, which are expensive and facing the problem of shortage in supply. WLEDs based on the combination of orange and blue emitting copper nanoclusters are introduced, which are easy to produce and low in cost. Orange emitting Cu nanoclusters (NCs) are synthesized using glutathione as both the reduction agent and stabilizer, followed by solvent induced aggregation leading to the emission enhancement.
View Article and Find Full Text PDFOrganometallic halide perovskites have recently drawn considerable attention for applications in light emission diodes (LEDs). However, the small exciton binding energy of the CHNHPbI perovskite has the concerns of large exciton dissociation and low radiative recombination on its use in near-infrared LEDs (NIR-LEDs). Herein, we propose and demonstrate that the introduction of poly(2-ethyl-2-oxazoline) (PEtOz) into the perovskite can simultaneously improve the recombination rate and radiative decay rate for improving perovskite LED performances.
View Article and Find Full Text PDFStrongly emissive (photoluminescence quantum yield up to 65%), thermally stable aluminum hydroxide blue phosphors are synthesized by a single-source precursor-decomposition approach. Blue-emitting UV-pumped light-emitting diodes (LEDs) based on the aluminum hydroxide phosphor reach luminous efficiency of 27.5 lm W , while UV-white-LEDs integrating blue-emitting aluminum hydroxide and red-emitting CuInS nanocrystals achieve high color-rendering-index values of 94.
View Article and Find Full Text PDFWhile methylammonium lead iodide (MAPbI3) with interesting properties, such as a direct band gap, high and well-balanced electron/hole mobilities, as well as long electron/hole diffusion length, is a potential candidate to become the light absorbers in photodetectors, the challenges for realizing efficient perovskite photodetectors are to suppress dark current, to increase linear dynamic range, and to achieve high specific detectivity and fast response speed. Here, we demonstrate NiOx:PbI2 nanocomposite structures, which can offer dual roles of functioning as an efficient hole extraction layer and favoring the formation of high-quality MAPbI3 to address these challenges. We introduce a room-temperature solution process to form the NiOx:PbI2 nanocomposite structures.
View Article and Find Full Text PDFPoly(vinylpyrrolidone) supported Cu nanoclusters were synthesized by reduction of Cu(ii) ions with ascorbic acid in water, and initially showed blue photoluminescence with a quantum yield of 8%. An enhancement of the emission quantum yield has been achieved by treatment of Cu clusters with different electron-rich ligands, with the most pronounced effect (photoluminescence quantum yield of 27%) achieved with glutathione. The bright blue emission of glutathione treated Cu NCs is fully preserved in the solid state powder, which has been combined with commercial green and red phosphors to fabricate down-conversion white light emitting diodes with a high colour rendering index of 92.
View Article and Find Full Text PDFWe have studied light emission kinetics and analyzed carrier recombination channels in HgTe quantum dots that were initially grown in H2O. When the solvent is replaced by D2O, the nonradiative recombination rate changes highlight the role of the vibrational degrees of freedom in the medium surrounding the dots, including both solvent and ligands. The contributing energy loss mechanisms have been evaluated by developing quantitative models for the nonradiative recombination via (i) polaron states formed by strong coupling of ligand vibration modes to a surface trap state (nonresonant channel) and (ii) resonant energy transfer to vibration modes in the solvent.
View Article and Find Full Text PDFHigh photoluminescence quantum yield, easily tuned emission colors, and high color purity of perovskite nanocrystals make this class of material attractive for light source or display applications. Here, green light-emitting devices (LEDs) were fabricated using inorganic cesium lead halide perovskite nanocrystals as emitters. By introducing a thin film of perfluorinated ionomer (PFI) sandwiched between the hole transporting layer and perovskite emissive layer, the device hole injection efficiency has been significantly enhanced.
View Article and Find Full Text PDFOrganometallic trihalide perovskites are promising materials for photovoltaic applications, which have demonstrated a rapid rise in photovoltaic performance in a short period of time. We report a facile one-step method to fabricate planar heterojunction perovskite solar cells by chemical vapor deposition (CVD), with a solar power conversion efficiency of up to 11.1%.
View Article and Find Full Text PDFCarbon dots (CDs) have attracted rapidly growing interest in recent years due to their unique and tunable optical properties, the low cost of fabrication, and their widespread uses. However, due to the complex structure of CDs, both the molecular ingredients and the intrinsic mechanisms governing photoluminescence of CDs are poorly understood. Among other features, a large Stokes shift of over 100 nm and a photoluminescence spectrally dependent on the excitation wavelength have so far not been adequately explained.
View Article and Find Full Text PDFWe realized white light-emitting diodes with high color rendering index (85-96) and widely variable color temperatures (2805-7786 K) by combining three phosphors based on carbon dots and polymer dots, whose solid-state photoluminescence self-quenching was efficiently suppressed within a polyvinyl pyrrolidone matrix. All three phosphors exhibited dominant absorption in the UV spectral region, which ensured the weak reabsorption and no energy transfer crosstalk. The WLEDs showed excellent color stability against the increasing current because of the similar response of the tricolor phosphors to the UV light variation.
View Article and Find Full Text PDF