In situ chemical oxidation (ISCO) has demonstrated success in remediating soil and groundwater contaminated with chlorinated volatile organic compounds (CVOCs). However, its performance is often hindered in low-permeability or heterogeneous media due to an inability to effectively deliver the oxidants. This field-scale study investigated the novel approach of applying electrokinetics (EK) to enhance the delivery of persulfate in a low-permeability media and the ability of electrical resistance heating (ERH) to thermally activate the delivered persulfate.
View Article and Find Full Text PDFSulfidated nano zerovalent iron (S-nZVI), stabilized with carboxymethyl cellulose (CMC), was successfully synthesized on site and injected into the subsurface at a site contaminated with a broad range of chlorinated volatile organic compounds (cVOCs). Transport of CMC-S-nZVI to the monitoring wells, both downgradient and upgradient, resulted in a significant decrease in concentrations of aqueous-phase cVOCs. Short-term (0-17 days) total boron and chloride measurements indicated dilution and displacement in these wells.
View Article and Find Full Text PDFTreatment of nano zerovalent iron (nZVI) with lower valent forms of sulfur compounds (sulfidation) has the potential to increase the selectivity and reactivity of nZVI with target contaminants and to decrease inter-particle aggregation for improving its mobility. These developments help in addressing some of the long-standing challenges associated with nZVI-based remediation treatments and are of great interest for in situ applications. Herein we report results from a field-scale project conducted at a contaminated site.
View Article and Find Full Text PDFA pilot injection test with guar gum stabilized microscale zerovalent iron (mZVI) particles was performed at test site V (Belgium) where different chlorinated aliphatic hydrocarbons (CAHs) were present as pollutants in the subsurface. One hundred kilograms of 56μm-diameter mZVI (~70gL(-1)) was suspended in 1.5m(3) of guar gum (~7gL(-1)) solution and injected into the test area.
View Article and Find Full Text PDF