IEEE Trans Neural Netw Learn Syst
September 2024
Temporal graph learning has attracted great attention with its ability to deal with dynamic graphs. Although current methods are reasonably accurate, most of them are unexplainable due to their black-box nature. It remains a challenge to explain how temporal graph learning models adapt to information evolution.
View Article and Find Full Text PDFWith the explosive growth of artificial intelligence (AI) and big data, it has become vitally important to organize and represent the enormous volume of knowledge appropriately. As graph data, knowledge graphs accumulate and convey knowledge of the real world. It has been well-recognized that knowledge graphs effectively represent complex information; hence, they rapidly gain the attention of academia and industry in recent years.
View Article and Find Full Text PDF