Fractional-order systems generalize classical differential systems and have empirically shown to achieve fine-grain modeling of the temporal dynamics and frequency responses of certain real-world phenomena. Although the study of integer-order memory element (mem-element) emulators has persisted for several years, the study of fractional-order mem-elements has received little attention. To promote the study of the characteristics and applications of mem-element systems in fractional calculus and memory systems, a novel universal fractional-order mem-elements interface for constructing three types of fractional-order mem-element emulators is proposed in this paper.
View Article and Find Full Text PDFThe modern electric power grid is evolving rapidly into such a state that distributed controllers and two-way energy and information flow are replacing the traditional paradigm of electricity distribution and energy management. Therefore, a power grid coupled with a communication network is playing a pivotal role in establishing modern electric power systems. Previous cascading failure analysis in power systems focused more on the physical network, while falling short of investigations on the coupling effect of interdependency of the integrated electricity and communication networks, i.
View Article and Find Full Text PDFIn large-scale high-density integrated circuits, memristors in close proximity to one another both influence, and are influenced by, the behavior of nearby memristors. However, the previous analyses of memristors-based circuit applications have seldom considered the possibility of coupling effects between memristors which invariably influences the response of all memristors, thus rendering much previous research as incomplete. In this paper, the circuit dynamics of memristive Chua's circuits are systematically analyzed based on a pair of compositely connected flux-controlled memristors characterized by cubic nonlinearity as a typical example.
View Article and Find Full Text PDF