Background: Bronchopulmonary dysplasia (BPD) is a chronic lung condition of premature neonates, yet without an established pharmacological treatment. The BPD rabbit model exposed to 95% oxygen has been used in recent years for drug testing. However, the toxicity of the strong hyperoxic hit precludes a longer-term follow-up due to high mortality after the first week of life.
View Article and Find Full Text PDFThe design of inhaled selective phosphatidylinositol 3-kinase delta (PI3Kδ) inhibitors for the treatment of inflammatory lung diseases was pursued. Knowledge-based design of a novel isocoumarin scaffold that was able to adopt a topology ensured the desired PI3Kδ selectivity. Achievement of low nanomolar cellular potencies through hinge binder group optimization, reduction of intrinsic permeability through head group optimization to extend lung retention, and screening of crystalline forms suitable for administration as dry powders culminated in the identification of compound .
View Article and Find Full Text PDFIdiopathic Pulmonary Fibrosis (IPF) is a debilitating and fatal lung disease characterized by the excessive formation of scar tissue and decline of lung function. Despite extensive research, only two FDA-approved drugs exist for IPF, with limited efficacy and relevant side effects. Thus, there is an urgent need for new effective therapies, whose discovery strongly relies on IPF animal models.
View Article and Find Full Text PDFClinical guidelines for COPD and asthma recommend inhaled β-adrenergic agonists, muscarinic antagonists, and, for frequent exacerbators, inhaled corticosteroids, with the challenge of combining them into a single device. The MABA (muscarinic antagonist and β agonist) concept has the potential to simplify this complexity while increasing the efficacy of both pharmacologies. In this article, we report the outcome of our solid-state driven back-up program that led to the discovery of the MABA compound .
View Article and Find Full Text PDFInhibition of p38 mitogen-activated protein kinase (MAPKs) is a potential therapeutic approach for the treatment of acute and chronic pulmonary inflammatory conditions. Here, we report the and characterization of the anti-inflammatory effects of CHF6297, a novel potent and selective p38α inhibitor designed for inhalation delivery as a dry powder formulation. CHF6297 has been proven to inhibit p38α enzymatic activity with sub-nanomolar potency (IC = 0.
View Article and Find Full Text PDFBackground: Idiopathic pulmonary fibrosis (IPF) is an irreversible disorder with a poor prognosis. The incomplete understanding of IPF pathogenesis and the lack of accurate animal models is limiting the development of effective treatments. Thus, the selection of clinically relevant animal models endowed with similarities with the human disease in terms of lung anatomy, cell biology, pathways involved and genetics is essential.
View Article and Find Full Text PDFIdiopathic pulmonary fibrosis (IPF) is a progressive and fatal disease characterized by lung fibrosis leading to an irreversible decline of lung function. Current antifibrotic drugs on the market slow down but do not prevent the progression of the disease and are associated with tolerability issues. The involvement of lysophosphatidic acid receptor 2 (LPA) in IPF is supported by LPA knockdown studies.
View Article and Find Full Text PDFThe development of molecules embedding two distinct pharmacophores acting as muscarinic antagonists and β agonists (MABAs) promises to be an excellent opportunity to reduce formulation issues and boost efficacy through cross-talk and allosteric interactions. Herein, we report the results of our drug discovery campaign aimed at improving the therapeutic index of a previous MABA series by exploiting the super soft-drug concept. The incorporation of a metabolic liability, stable at the site of administration but undergoing rapid systemic metabolism, to generate poorly active and quickly eliminated fragments was pursued.
View Article and Find Full Text PDFNeutrophils, the most abundant subset of leukocytes in the blood, play a pivotal role in host response against invading pathogens. However, in respiratory diseases, excessive infiltration and activation of neutrophils can lead to tissue damage. Tanimilast-international non-proprietary name of CHF6001-is a novel inhaled phosphodiesterase 4 (PDE4) inhibitor in advanced clinical development for the treatment of chronic obstructive pulmonary disease (COPD), a chronic inflammatory lung disease where neutrophilic inflammation plays a key pathological role.
View Article and Find Full Text PDFThe identification of novel inhaled p38α/β mitogen-activated protein kinases (MAPK) (MAPK14/11) inhibitors suitable for the treatment of pulmonary inflammatory conditions has been described. A rational drug design approach started from the identification of a novel tetrahydronaphthalene series, characterized by nanomolar inhibition of p38α with selectivity over p38γ and p38δ isoforms. SAR optimization of is outlined, where improvements in potency against p38α and ligand-enzyme dissociation kinetics led to several compounds showing pronounced anti-inflammatory effects (inhibition of TNFα release).
View Article and Find Full Text PDFBackground: Tanimilast is a novel and selective inhaled inhibitor of phosphodiesterase-4 in advanced clinical development for chronic obstructive pulmonary disease (COPD). Tanimilast is known to exert prominent anti-inflammatory activity when tested in preclinical experimental models as well as in human clinical studies. Recently, we have demonstrated that it also finely tunes, rather than suppressing, the cytokine network secreted by activated dendritic cells (DCs).
View Article and Find Full Text PDFPhosphodiesterase 4 (PDE4) inhibitors are immunomodulatory drugs approved to treat diseases associated with chronic inflammatory conditions, such as COPD, psoriasis and atopic dermatitis. Tanimilast (international non-proprietary name of CHF6001) is a novel, potent and selective inhaled PDE4 inhibitor in advanced clinical development for the treatment of COPD. To begin testing its potential in limiting hyperinflammation and immune dysregulation associated to SARS-CoV-2 infection, we took advantage of an model of dendritic cell (DC) activation by SARS-CoV-2 genomic ssRNA (SCV2-RNA).
View Article and Find Full Text PDFChronic respiratory diseases are the third leading cause of death, behind cardiovascular diseases and cancer, affecting approximately 550 million of people all over the world. Most of the chronic respiratory diseases are attributable to asthma and chronic obstructive pulmonary disease (COPD) with this latter being the major cause of deaths. Despite differences in etiology and symptoms, a common feature of asthma and COPD is an underlying degree of airways inflammation.
View Article and Find Full Text PDFPulmonary surfactant is a complex lipoprotein mixture secreted into the alveolar lumen by type 2 pneumocytes, which is composed by tens of different lipids (approximately 90% of its entire mass) and surfactant proteins (approximately 10% of the mass). It is crucially involved in maintaining lung homeostasis by reducing the values of alveolar liquid surface tension close to zero at end-expiration, thereby avoiding the alveolar collapse, and assembling a chemical and physical barrier against inhaled pathogens. A deficient amount of surfactant or its functional inactivation is directly linked to a wide range of lung pathologies, including the neonatal respiratory distress syndrome.
View Article and Find Full Text PDFIn this paper, we report the discovery of dual M antagonist-PDE4 inhibitor (MAPI) compounds for the inhaled treatment of pulmonary diseases. The identification of dual compounds was enabled by the intuition that the fusion of a PDE4 scaffold derived from our series with a muscarinic scaffold through a common linking ring could generate compounds active versus both the transmembrane M receptor and the intracellular PDE4 enzyme. Two chemical series characterized by two different muscarinic scaffolds were investigated.
View Article and Find Full Text PDFAlthough increasing used in the preclinical testing of new anti-fibrotic drugs, a thorough validation of micro-computed tomography (CT) in pulmonary fibrosis models has not been performed. Moreover, no attempts have been made so far to define density thresholds to discriminate between aeration levels in lung parenchyma. In the present study, a histogram-based analysis was performed in a mouse model of bleomycin (BLM)-induced pulmonary fibrosis by micro-CT, evaluating longitudinal density changes from 7 to 21 days after BLM challenge, a period representing the progression of fibrosis.
View Article and Find Full Text PDFWe study the unconventional superconducting correlations caused by a single isolated magnetic impurity in a conventional s-wave superconductor. Because of the local breaking of time-reversal symmetry, the impurity induces unconventional superconductivity, which is even in both space and spin variables but odd under time inversion. We derive an exact proportionality relation between the even-frequency component of the local electron density of states and the imaginary part of the odd-frequency local pairing function.
View Article and Find Full Text PDFIdiopathic pulmonary fibrosis (IPF) is a chronic progressive degenerative lung disease leading to respiratory failure and death. Although anti-fibrotic drugs are now available for treating IPF, their clinical efficacy is limited and lung transplantation remains the only modality to prolong survival of IPF patients. Despite its limitations, the bleomycin (BLM) animal model remains the best characterized experimental tool for studying disease pathogenesis and assessing efficacy of novel potential drugs.
View Article and Find Full Text PDFAcute respiratory virus infections, such as influenza and RSV, are predominant causes of asthma exacerbations. Eosinophils act as a double-edged sword in exacerbations in that they are activated by viral infections but also can capture and inactivate respiratory viruses. Phosphodiesterase type 4 (PDE4) is abundantly expressed by eosinophils and has been implicated in their activation.
View Article and Find Full Text PDFPsoriasis is a skin disease characterized by abnormal keratinocyte proliferation and inflammation. Currently, there are no cures for this disease, so the goal of treatment is to decrease inflammation and slow down the associated rapid cell growth and shedding. Recent advances have led to the usage of phosphodiesterase 4 (PDE4) inhibitors for treatment of this condition.
View Article and Find Full Text PDF