Publications by authors named "Ciulla M"

This work deals with the synthesis of Na-P1 (GIS) zeolite using rice husk as the starting material, instead of the more expensive chemicals currently used in the industry (i.e., Na aluminates and Na silicates).

View Article and Find Full Text PDF

Humans exposed to altitude hypoxia experience dysfunctions of the urinary system. As a non-invasive, easily manageable and informative biological sample, urine represents a relevant matrix for detecting clinical impairments of urinary system, as well as alterations of other systems and extracellular vesicles (EVs) biology during high-altitude expeditions. Nevertheless, gaps exist in the comprehensive assessment of dysfunction, molecular burden and EVs biology due to high-altitude acute exposure.

View Article and Find Full Text PDF

Background And Aims: Small bowel capsule endoscopy (SBCE) has an established role in patients with non-responsive celiac disease (CeD). A non-invasive method to quantify small bowel atrophy is still lacking.

Methods: We analysed SBCE frames from CeD patients from 2018 to 2020.

View Article and Find Full Text PDF

The present work deals with the hydrothermal synthesis of a Na-A (LTA) zeolite using rice husk as a starting material. The focus was on defining the most favorable conditions for the synthesis of zeolite Na-A from rice husk in order to economize on both energy (i.e.

View Article and Find Full Text PDF

Piezoelectric materials can provide electrical stimulation without external chemical or physical support, opening new frontiers for future bioelectric therapies. Polyvinylidene fluoride (PVDF) possesses piezoelectricity and biocompatibility, making it an electroactive biomaterial capable of enhancing bioactivity through instantaneous electrical stimulation, which indicates significant potential in tissue engineering. In this study, we developed electroactive and biomimetic scaffolds made of electrospun PVDF and self-assembling peptides (SAPs) to enhance stem cell transplantation for spinal cord injury regeneration.

View Article and Find Full Text PDF

Responsiveness of liposomes to external stimuli, such as light, should allow a precise spatial and temporal control of release of therapeutic agents or ion transmembrane transport. Here, some aryl-azo derivatives of thymol are synthesized and embedded into liposomes from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine to obtain light-sensitive membranes whose photo-responsiveness, release behaviour, and permeability towards Cl ions are investigated. The hybrid systems are in-depth characterized by dynamic light scattering, atomic force microscopy and Raman spectroscopy.

View Article and Find Full Text PDF

Self-assembling peptides (SAPs) have gained significant attention in biomedicine because of their unique properties and ability to undergo molecular self-assembly driven by non-covalent interactions. By manipulating their composition and structure, SAPs can form well-ordered nanostructures with enhanced selectivity, stability and biocompatibility. SAPs offer advantages such as high chemical and biological diversity and the potential for functionalization.

View Article and Find Full Text PDF

The development of three-dimensional (3D) biomaterials that mimic natural tissues is required for efficiently restoring physiological functions of injured tissues and organs. In the field of soft hydrogels, self-assembled peptides (SAPs) stand out as distinctive biomimetic scaffolds, offering tunable properties. They have garnered significant attention in nanomedicine due to their innate ability to self-assemble, resulting in the creation of fibrous nanostructures that closely mimic the microenvironment of the extracellular matrix (ECM).

View Article and Find Full Text PDF

In this review, we focused on recent efforts in the design and development of materials with biomimetic properties. Innovative methods promise to emulate cell microenvironments and tissue functions, but many aspects regarding cellular communication, motility, and responsiveness remain to be explained. We photographed the state-of-the-art advancements in biomimetics, and discussed the complexity of a "bottom-up" artificial construction of living systems, with particular highlights on hydrogels, collagen-based composites, surface modifications, and three-dimensional (3D) bioprinting applications.

View Article and Find Full Text PDF

Spinal cord regeneration using stem cell transplantation is a promising strategy for regenerative therapy. Stem cells transplanted onto scaffolds that can mimic natural extracellular matrix (ECM) have the potential to significantly improve outcomes. In this study, we strived to develop a cell carrier by culturing neural stem cells (NSCs) onto electrospun 2D and 3D constructs made up of specific crosslinked functionalized self-assembling peptides (SAPs) featuring enhanced biomimetic and biomechanical properties.

View Article and Find Full Text PDF
Article Synopsis
  • Biomaterials for tissue engineering need to resemble the native extracellular matrix in both structure and mechanical properties for effective implantation therapies.
  • Self-assembling peptides (SAPs) are promising materials but often produce soft hydrogels unsuitable for tougher tissues; chemical cross-linking is a common solution but can involve toxic or expensive agents.
  • The study introduces a novel, green method using microwave irradiation to enhance the stiffness and resilience of SAPs without compromising their biomimetic properties, suggesting a feasible approach for broader use in research and clinical applications.
View Article and Find Full Text PDF

Human pancreatic islets transplantation is an experimental therapeutic treatment for Type I Diabetes. Limited islets lifespan in culture remains the main drawback, due to the absence of native extracellular matrix as mechanical support after their enzymatic and mechanical isolation procedure. Extending the limited islets lifespan by creating a long-term culture remains a challenge.

View Article and Find Full Text PDF

This systematic study aims at analyzing the differences between the approach of the European healthcare systems to the pharmaceutical market and the American one. This paper highlights the opportunities and the limitations given by the application of managed entry agreements (MEAs) in European countries as opposed to the American market, which does not regulate pharmaceutical prices. Data were collected from the Organisation for Economic Co-operation and Development (OECD), the European Medicines Agency, and the national healthcare agencies of US and European countries.

View Article and Find Full Text PDF

Antimicrobial peptides play a crucial role in innate immunity, whose components are mainly peptide-based molecules with antibacterial properties. Indeed, the exploration of the immune system over the past 40 years has revealed a number of natural peptides playing a pivotal role in the defence mechanisms of vertebrates and invertebrates, including amphibians, insects, and mammalians. This review provides a discussion regarding the antibacterial mechanisms of peptide-based agents and their structure-activity relationships (SARs) with the aim of describing a topic that is not yet fully explored.

View Article and Find Full Text PDF

The encapsulation of peptides and proteins in nanosystems has been extensively investigated for masking unfavorable biopharmaceutical properties, including short half-life and poor permeation through biological membranes. Therefore, the aim of this work was to encapsulate a small antimicrobial hydrophilic peptide (H-Ser-Pro-Trp-Thr-NH2, FS10) in PEG-PLGA (polyethylene glycol-poly lactic acid-co-glycolic acid) nanoparticles (Nps) and thereby overcome the common limitations of hydrophilic drugs, which because they facilitate water absorption suffer from rapid degradation. FS10 is structurally related to the well-known RNAIII inhibiting peptide (RIP) and inhibits S.

View Article and Find Full Text PDF

Natural product (NP)-inspired design principles provide invaluable guidance for bioactive compound discovery. Pseudo-natural products (PNPs) are de novo combinations of NP fragments to target biologically relevant chemical space not covered by NPs. We describe the design and synthesis of apoxidoles, a novel pseudo-NP class, whereby indole- and tetrahydropyridine fragments are linked in monopodal connectivity not found in nature.

View Article and Find Full Text PDF

Tissue engineering (TE) strategies require the design and characterization of novel biomaterials capable of mimicking the physiological microenvironments of the tissues to be regenerated. As such, implantable materials should be biomimetic, nanostructured and with mechanical properties approximating those of the target organ/tissue. Self-assembling peptides (SAPs) are biomimetic nanomaterials that can be readily synthesized and customized to match the requirements of some TE applications, but the weak interactions involved in the self-assembling phenomenon make them soft hydrogels unsuited for the regeneration of medium-to-hard tissues.

View Article and Find Full Text PDF

Novel boron-based compounds (BBCs) were synthesized and evaluated as potential candidates for the development of novel drugs against Alzheimer's disease (AD). The neuroprotective profile of novel BBCs was evaluated using Aβ1-42-treated-SH-SY5Y cells while their antioxidant activity was evaluated by total antioxidant capacity (TAC) and total oxidative status (TOS) assays. Results showed that (a novel boron-based hybrid containing an antioxidant portion) inhibited cell death induced by Aβ1-42-exposure in differentiated SH-SY5Y cells, resulting in an increase in cell viability by 25-33% (MTT assay) and by 63-71% (LDH assay) in a concentration range of 25-100 μM.

View Article and Find Full Text PDF

Medical practice is increasingly coming under the guidance of statistical-mathematical models that are, undoubtedly, valuable tools but are also only a partial representation of reality. Indeed, given that statistics may be more or less adequate, a model is still a subjective interpretation of the researcher and is also influenced by the historical context in which it operates. From this opinion, I will provide a short historical excursus that retraces the advent of probabilistic medicine as a long process that has a beginning that should be sought in the discovery of the complexity of disease.

View Article and Find Full Text PDF

Background: Diseases of the oral cavity (OC) with an infectious trigger such as caries and periodontal disease are extremely common in the general population and can also have effects at the cardiovascular level. The oral salivary flow, with its buffering capacity, is able to regulate the pH of the OC and, therefore, significantly contribute to the ecological balance of the microenvironment in which the oral microbiome (OM) develops. On the other side, when the quality/quantity of salivary flow is altered it is supposed the disruption of this balance with the potential increase in oral pathogens and triggered diseases.

View Article and Find Full Text PDF

An amphiphilic calix[6]arene, alone or complexed with an axle to form a pseudo-rotaxane, has been embedded into liposomes prepared from 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and the permeability of the membrane-doped liposomes towards Cl ions has been evaluated by using lucigenin as the fluorescent probe. The pseudo-rotaxane promotes transmembrane transport of Cl ions more than calix[6]arene does. Surprisingly, the quenching of lucigenin was very fast for liposomes doped with the positively charged axle alone.

View Article and Find Full Text PDF