Publications by authors named "Ciuffi S"

Context: Measurement of circulating microRNAs (miRNAs) as potential biomarkers of fragility fracture risk has recently become a subject of investigation.

Objective: Measure by next-generation sequencing (NGS), global miRNA expression in serum samples of osteoporotic subjects vs individuals with normal bone mineral density (BMD).

Design: Samples were collected from patients with different bone phenotypes and/or fragility fractures who did not receive any antiresorptive and/or bone-forming drug at the time of blood collection.

View Article and Find Full Text PDF

The discovery that osteocytes secrete phosphaturic fibroblast growth factor 23 (FGF23) has defined bone as an endocrine organ. However, the autocrine and paracrine functions of FGF23 are still unknown. The present study focuses on the cellular and molecular mechanisms involved in the complex control of FGF23 production and local bone remodeling functions.

View Article and Find Full Text PDF

Context: Hypophosphatasia (HPP) is a rare metabolic disorder caused by deficiency of alkaline phosphatase (ALP) enzyme activity, leading to defective mineralization, due to pathogenic variants of the ALPL gene, encoding the tissue nonspecific alkaline phosphatase (TNSALP) enzyme. Inheritance can be autosomal recessive or autosomal dominant. An abnormal ALPL genetic test enables accurate diagnosis, avoiding the administration of contraindicated antiresorptive drugs that, in patients with HPP, substantially increase the risk of atypical femur fractures (AFFs) and worsen the fracture healing process that is usually already compromised in these patients.

View Article and Find Full Text PDF

Juvenile idiopathic arthritis (JIA) is the most common chronic arthritis of children and adolescents. Autoimmune mechanisms are suspected to have a central role in its development. Vitamin D is an immuno-modulator in a variety of conditions, including autoimmune diseases.

View Article and Find Full Text PDF

Multiple endocrine neoplasia type 1 (MEN1) is a rare inherited tumor syndrome, characterized by the development of multiple neuroendocrine tumors (NETs) in a single patient. Major manifestations include primary hyperparathyroidism, gastro-entero-pancreatic neuroendocrine tumors, and pituitary adenomas. In addition to these main NETs, various combinations of more than 20 endocrine and non-endocrine tumors have been described in MEN1 patients.

View Article and Find Full Text PDF

Osteoporosis (OP) is a multifactorial disorder in which environmental factors along with genetic variants and epigenetic mechanisms have been implicated. Long non-coding RNAs (lncRNAs) have recently emerged as important regulators of bone metabolism and OP aetiology. In this study, we analyzed the expression level and the genetic association of lncRNA GAS5 in OP patients compared to controls.

View Article and Find Full Text PDF

Osteoporosis is a multifactorial skeletal disease that is associated with both bone mass decline and microstructure damage. The fragility fractures-especially those affecting the femur-that embody the clinical manifestation of this pathology continue to be a great medical and socioeconomic challenge worldwide. The currently available diagnostic tools, such as dual energy X-ray absorptiometry, Fracture Risk Assessment Tool (FRAX) score, and bone turnover markers, show limited specificity and sensitivity; therefore, the identification of alternative approaches is necessary.

View Article and Find Full Text PDF

Osteoporosis, one of the leading causes of bone fractures, is characterized by low bone mass and structural deterioration of bone tissue, which are associated with a consequent increase in bone fragility and predisposition to fracture. Current screening tools are limited in estimating the proper assessment of fracture risk, highlighting the need to discover novel more suitable biomarkers. Genetic and environmental factors are both implicated in this disease.

View Article and Find Full Text PDF

Context: Hyperparathyroidism-jaw tumour (HPT-JT) syndrome is a rare autosomal dominant cause of familial hyperparathyroidism associated with ossifying fibromas (OF) of the maxillofacial bones and increased risk of parathyroid carcinoma, caused by inactivating germline mutation of the cell division cycle 73 (CDC73) gene.

Objective: To report the first Romanian family with HPT-JT and genetic screening of CDC73 gene.

Subjects And Methods: Mutational analysis of the CDC73 gene and genetic screening of the family of a proband with HPT-JT.

View Article and Find Full Text PDF

miRNAs are small non-coding RNAs of about 18-25 nucleotides that negatively regulate gene expression at the post-transcriptional level. It was reported that a deregulation of their expression patterns correlates to the onset and progression of various diseases. Recently, these molecules have been identified in a great plethora of biological fluids, and have also been proposed as potential diagnostic and prognostic biomarkers.

View Article and Find Full Text PDF

Hyperparathyrodism-jaw tumor (HPT-JT) syndrome is an autosomal dominant disorder. Loss of function of the cell division cycle protein 73 homolog (CDC73) gene is responsible for the syndrome. This gene encodes an ubiquitously expressed 531 amino acid protein, parafibromin, that acts as a tumor suppressor.

View Article and Find Full Text PDF

Adipose-derived stem/stromal cells (ASCs), together with adipocytes, vascular endothelial cells, and vascular smooth muscle cells, are contained in fat tissue. ASCs, like the human bone marrow stromal/stem cells (BMSCs), can differentiate into several lineages (adipose cells, fibroblast, chondrocytes, osteoblasts, neuronal cells, endothelial cells, myocytes, and cardiomyocytes). They have also been shown to be immunoprivileged, and genetically stable in long-term cultures.

View Article and Find Full Text PDF

Purpose: To retrospectively evaluate the age of onset of MEN1-associated lesions in a group of affected children and adolescents and to compare the clinical features of our series with the evidence derived from the literature.

Methods: The study population consisted of 22 Italian children and adolescents (age 6-31 years at the time of the inclusion in this study) all with a clinical and/or a genetic diagnosis of MEN1 performed before the age of 16 who have been followed-up regularly from 1998 to 2016 at the Regional Referral Center for Hereditary Endocrine Tumors. Clinical, biochemical, imaging and genetic data have been collected for each patient.

View Article and Find Full Text PDF

Multiple Endocrine Neoplasia type 1 (MEN1) syndrome is a rare complex tumor-predisposing hereditary disorder, inherited in an autosomal dominant manner (OMIM 131100). MEN1 is characterized by tumors of the parathyroids, the neuroendocrine cells of the gastro-entero-pancreatic tract, and the anterior pituitary. The molecular mechanisms that control parathyroid tumorigenesis are still poorly understood.

View Article and Find Full Text PDF

Background: All implant compounds undergo an electrochemical process when in contact with biological fluids, as well as mechanical corrosion due to abrasive wear, with production of metal debris that may inhibit repair processes. None of the commonly-used methods can diagnose implant allergies when used singly, therefore a panel of tests should be performed on allergic patients as pre-operative screening, or when a postoperative metal sensitisation is suspected.

Methods: We analysed patients with painful prostheses and subjects prone to allergies using the Patch Test in comparison with the Lymphocyte Transformation Test.

View Article and Find Full Text PDF

Multiple endocrine neoplasia type 1 (MEN1) is a rare hereditary cancer complex syndrome manifesting a variety of endocrine and non-endocrine neoplasms and lesions. MEN1 is characterized by tumours of the parathyroids, of the neuroendocrine cells of the gastroenteropancreatic tract, and of the anterior pituitary. The MEN1 gene, a tumour suppressor gene, encodes the menin protein.

View Article and Find Full Text PDF

Bone tissue engineering and nanotechnology enable the design of suitable substitutes to restore and maintain the function of human bone tissues in complex fractures and other large skeletal defects. Long-term stability and functionality of prostheses depend on integration between bone cells and biocompatible implants. Human adipose tissue-derived mesenchymal stem cells (hAMSCs) have been shown to possess the same ability to differentiate into osteoblasts and to produce bone matrix of classical bone marrow derived stem cells (BMMSCs).

View Article and Find Full Text PDF

Development of tools to be used for in vivo bone tissue regeneration focuses on cellular models and differentiation processes. In searching for all the optimal sources, adipose tissue-derived mesenchymal stem cells (hADSCs or preadipocytes) are able to differentiate into osteoblasts with analogous characteristics to bone marrow mesenchymal stem cells, producing alkaline phosphatase (ALP), collagen, osteocalcin, and calcified nodules, mainly composed of hydroxyapatite (HA). The possibility to influence bone differentiation of stem cells encompasses local and systemic methods, including the use of drugs administered systemically.

View Article and Find Full Text PDF

Human disorders of phosphate (Pi) handling and skeletal mineralization represent a group of rare bone diseases. One of these disease is tumoral calcinosis (TC). In this study, we present the case of a patient with TC with a new GALNT3 gene mutation.

View Article and Find Full Text PDF

Objectives: Sex steroids are important regulators of bone physiology and play an essential role in the maintenance of bone health throughout the life. Hormonal replacement therapy (HRT) is a treatment commonly used to relieve symptoms and some undesirable consequences of menopause such as osteoporosis. Osteoporosis, characterized by the loss of bone mass and deterioration of microarchitecture with a consequent higher risk of fragility fractures, is under genetic influence.

View Article and Find Full Text PDF

The lack of a continuous cell line of epithelial parathyroid cells able to produce parathyroid hormone (PTH) has hampered the studies on in vitro evaluation of the mechanisms involved in the control of parathyroid cell function and proliferation. The PT-r cell line was first established from rat parathyroid tissue in 1987, but these cells were known to express the parathyroid hormone-related peptide (Pthrp) gene, but not the Pth gene. In an attempt to subclone the PT-r cell line, a rat parathyroid cell strain was isolated and named PTH-C1.

View Article and Find Full Text PDF

Background: Osteoporosis is the most common metabolic bone disorder of the elderly, affecting the normal bone turnover with an increased bone resorption and subsequent higher risk of fragility fractures. Collagen type 1 is the most represented protein in bone matrix. A genetic variation (Sp1) in intron 1 of COL1A1 gene has been associated to modulation of expression of the alpha 1 chain of collagen type 1 and it is considered a candidate polymorphism for predisposition to osteoporosis status and fragility fractures.

View Article and Find Full Text PDF

Commonly, mesenchymal stem cells derived from bone marrow (BMSCs) are mainly utilized in regenerative medicine field. BMSCs are able to differentiate into several lineages, showing immunosuppressive properties, and they are genetically stable in long-term cultures. In the last years, another mesenchymal stem cells population, obtained from adipose tissue, defined adipose-derived stem/stromal cells (ASCs), it is under assessment of scientific research, as alternative to BMSCs.

View Article and Find Full Text PDF