Publications by authors named "Ciuchi S"

Article Synopsis
  • The study investigates electron-boson scattering, moving beyond simple models and weak-coupling methods to provide accurate results at finite temperatures.
  • It reveals that quantum localization occurs even in the absence of external disorder, driven by thermal boson effects, but is only significant for short times before diffusion takes over.
  • Key evidence of this phenomenon is seen in altered optical absorption patterns and decreased conductivity, highlighting a new understanding of unusual metallic behavior in quantum materials.
View Article and Find Full Text PDF

We present a theory for band-tuned metal-insulator transitions based on the Kubo formalism. Such a transition exhibits scaling of the resistivity curves in the regime where Tτ>1 or μτ>1, where τ is the scattering time and μ the chemical potential. At the critical value of the chemical potential, the resistivity diverges as a power law, R_{c}∼1/T.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how electron-electron interactions affect the resistivity of three-dimensional semimetals with linear dispersion, leading to a unique temperature dependence.
  • Unlike conventional metals, which exhibit a quadratic temperature dependence in resistivity, these semimetals show a T^{6} behavior due to their interactions.
  • The findings also clarify the temperature dependence observed in transport experiments on topological semimetals, improving the understanding of their properties during various interaction strengths, including the Mott transition.
View Article and Find Full Text PDF

While the breakdown of the perturbation expansion for the many-electron problem has several formal consequences, here we unveil its physical effect: flipping the sign of the effective electronic interaction in specific scattering channels. By decomposing local and uniform susceptibilities of the Hubbard model via their spectral representations, we prove how entering the nonperturbative regime causes an enhancement of the charge response, ultimately responsible for the phase-separation instabilities close to the Mott metal-insulator transition. Our analysis opens a new route for understanding phase transitions in the nonperturbative regime and clarifies why attractive effects emerging from a strong repulsion can induce phase separations but not s-wave pairing or charge-density wave instabilities.

View Article and Find Full Text PDF
Article Synopsis
  • The Kohn-Sham system is an effective method for calculating electronic density without dealing with complex many-body wavefunctions, although it doesn't directly address excited states.
  • The proposal suggests creating auxiliary systems with specialized potentials that focus on specific spectral properties needed for analysis, rather than calculating extensive data that might be unnecessary.
  • The text also explores how to develop simplified effective kernels for optical absorption and photoemission, outlining their dependence on electronic density, making the calculations more efficient.
View Article and Find Full Text PDF

We present an inhomogeneous dynamical mean field theory (I-DMFT) that is suitable to investigate electron-lattice interactions in non-translationally invariant and/or inhomogeneous systems. The presented approach, whose only assumption is that of a local, site-dependent self-energy, recovers both the exact solution of an electron for a generic random tight-binding Hamiltonian in the non-interacting limit and the DMFT solution for the small polaron problem in translationally invariant systems. To illustrate its full capabilities, we use I-DMFT to study the effects of defects embedded on a two-dimensional surface.

View Article and Find Full Text PDF

The charge mobility of molecular semiconductors is limited by the large fluctuation of intermolecular transfer integrals, often referred to as off-diagonal dynamic disorder, which causes transient localization of the carriers' eigenstates. Using a recently developed theoretical framework, we show here that the electronic structure of the molecular crystals determines its sensitivity to intermolecular fluctuations. We build a map of the transient localization lengths of high-mobility molecular semiconductors to identify what patterns of nearest-neighbour transfer integrals in the two-dimensional (2D) high-mobility plane protect the semiconductor from the effect of dynamic disorder and yield larger mobility.

View Article and Find Full Text PDF

We show that, in the presence of a deformable lattice potential, the nature of the disorder-driven metal-insulator transition is fundamentally changed with respect to the noninteracting (Anderson) scenario. For strong disorder, even a modest electron-phonon interaction is found to dramatically renormalize the random potential, opening a mobility gap at the Fermi energy. This process, which reflects disorder-enhanced polaron formation, is here given a microscopic basis by treating the lattice deformations and Anderson localization effects on the same footing.

View Article and Find Full Text PDF

We report the formation and observation of an electron liquid in Sr(2-x)La(x)TiO4, the quasi-two-dimensional counterpart of SrTiO3, through reactive molecular-beam epitaxy and in situ angle-resolved photoemission spectroscopy. The lowest lying states are found to be comprised of Ti 3d_{xy} orbitals, analogous to the LaAlO3/SrTiO3 interface and exhibit unusually broad features characterized by quantized energy levels and a reduced Luttinger volume. Using model calculations, we explain these characteristics through an interplay of disorder and electron-phonon coupling acting cooperatively at similar energy scales, which provides a possible mechanism for explaining the low free carrier concentrations observed at various oxide heterostructures such as the LaAlO3/SrTiO3 interface.

View Article and Find Full Text PDF

By addressing the interplay between substitutional disorder and spin-orbit-coupling in chalcogenide alloys, we predict a strong robustness of spectral features at the Fermi energy. Indeed, supplementing our state of the art first-principles calculations with modeling analysis, we show that the disorder self-energy is vanishingly small close to the band gap, thus i) allowing for bulk Rashba-like spin splitting to be observed in ferroelectric alloys by means of Angle Resolved PhotoEmission Spectroscopy, and ii) protecting the band-character inversion related to the topological transition in recently discovered Topological Crystalline Insulators. Such a protection against strong disorder, which we demonstrate to be general for three dimensional Dirac systems, has potential and valuable implications for novel technologies, as spintronics and/or spinorbitronics.

View Article and Find Full Text PDF

In organic field-effect transistors, the structure of the constituent molecules can be tailored to minimize the disorder experienced by charge carriers. Experiments on two perylene derivatives show that disorder can be suppressed by attaching longer core substituents - thereby reducing potential fluctuations in the transistor channel and increasing the mobility in the activated regime - without altering the intrinsic transport properties.

View Article and Find Full Text PDF

Identifying the fingerprints of the Mott-Hubbard metal-insulator transition may be quite elusive in correlated metallic systems if the analysis is limited to the single particle level. However, our dynamical mean-field calculations demonstrate that the situation changes completely if the frequency dependence of the two-particle vertex functions is considered: The first nonperturbative precursors of the Mott physics are unambiguously identified well inside the metallic regime by the divergence of the local Bethe-Salpeter equation in the charge channel. In the low-temperature limit this occurs for interaction values where incoherent high-energy features emerge in the spectral function, while at high temperatures it is traceable up to the atomic limit.

View Article and Find Full Text PDF

By comparing photoemission spectroscopy with a nonperturbative dynamical mean field theory extension to many-body ab initio calculations, we show in the prominent case of pentacene crystals that an excellent agreement with experiment for the bandwidth, dispersion, and lifetime of the hole carrier bands can be achieved in organic semiconductors, provided that one properly accounts for the coupling to molecular vibrational modes and the presence of disorder. Our findings rationalize the growing experimental evidence that even the best band structure theories based on a many-body treatment of electronic interactions cannot reproduce the experimental photoemission data in this important class of materials.

View Article and Find Full Text PDF

The consequences of several microscopic interactions on the photoemission spectra of crystalline organic semiconductors are studied theoretically. It is argued that their relative roles can be disentangled by analyzing both their temperature and their momentum-energy dependence. Our analysis shows that the polaronic thermal band narrowing, which is the foundation of most theories of electrical transport in organic semiconductors, is inconsistent in the range of microscopic parameters appropriate for these materials.

View Article and Find Full Text PDF

We analyze a model that accounts for the inherently large thermal lattice fluctuations associated with the weak van der Waals intermolecular bonding in crystalline organic semiconductors. In these materials the charge mobility generally exhibits a "metalliclike" power-law behavior, with no sign of thermally activated hopping characteristic of carrier self-localization, despite apparent mean free paths comparable to or lower than the intermolecular spacing. Our results show that such a puzzling transport regime can be understood from the simultaneous presence of band carriers and incoherent states that are dynamically localized by the thermal lattice disorder.

View Article and Find Full Text PDF

We study the transition probability and coherence of a two-site system, interacting with an oscillator. Both properties depend on the initial preparation. The oscillator is prepared in a thermal state and, even though it cannot be considered as an extended bath, it produces decoherence because of the large number of states involved in the dynamics.

View Article and Find Full Text PDF

In organic field-effect transistors (FETs), charges move near the surface of an organic semiconductor, at the interface with a dielectric. In the past, the nature of the microscopic motion of charge carriers--which determines the device performance--has been related to the quality of the organic semiconductor. Recently, it was discovered that the nearby dielectric also has an unexpectedly strong influence.

View Article and Find Full Text PDF

We give an analytical formula in term of continued fraction expansions for the spectral function of a tunnelling electron, coupled to a local lattice oscillation, in a two-site cluster at non-zero temperature. We also study the spectral function of the polaron, a better defined quasi-particle in the anti-adiabatic regime and at sufficiently low temperature. The exact results obtained allow us to look into a wide range of temperature and coupling.

View Article and Find Full Text PDF

Isotope effects (IEs) are powerful tools to probe directly the dependence of many physical properties on lattice dynamics. In this Letter we investigate the onset of anomalous IEs in the spinless Holstein model by employing the dynamical mean field theory. We show that the isotope coefficients of the electron effective mass and of the dressed phonon frequency are sizable also far away from the polaronic crossover and mark the importance of nonadiabatic lattice fluctuations.

View Article and Find Full Text PDF

We present a unified view of the transport properties of small polarons in the Holstein model at low carrier densities, based on the dynamical mean-field theory. The nonperturbative nature of the approach allows us to study the crossover from classical activated motion at high temperatures to coherent motion at low temperatures. Large quantitative discrepancies from the standard polaronic formulas are found.

View Article and Find Full Text PDF

The formation of a finite-density polaronic state is analyzed in the context of the Holstein model using the dynamical mean-field theory. The spinless and spinful fermion cases are compared to disentangle the polaron crossover from the bipolaron formation. The exact solution of dynamical mean-field theory is compared with weak-coupling perturbation theory, noncrossing (Migdal), and vertex correction approximations.

View Article and Find Full Text PDF

The evidence for the key role of the sigma bands in the electronic properties of MgB2 points to the possibility of nonadiabatic effects in the superconductivity of these materials. These are governed by the small value of the Fermi energy due to the vicinity of the hole doping level to the top of the sigma bands. We show that the nonadiabatic theory leads to a coherent interpretation of T(c) = 39 K and the boron isotope coefficient alphaB = 0.

View Article and Find Full Text PDF

We present a novel path integral Monte Carlo scheme to solve the Fröhlich polaron model. At intermediate and strong electron-phonon couplings, the polaron self-trapping is properly taken into account at the level of an effective action obtained by a preaveraging procedure with a retarded trial action. We compute the free energy at several couplings and temperatures in three and two dimensions.

View Article and Find Full Text PDF