Glioblastoma multiforme (GBM) exhibits genetic alterations that induce the deregulation of oncogenic pathways, thus promoting metabolic adaptation. The modulation of metabolic enzyme activities is necessary to generate nucleotides, amino acids, and fatty acids, which provide energy and metabolic intermediates essential for fulfilling the biosynthetic needs of glioma cells. Moreover, the TCA cycle produces intermediates that play important roles in the metabolism of glucose, fatty acids, or non-essential amino acids, and act as signaling molecules associated with the activation of oncogenic pathways, transcriptional changes, and epigenetic modifications.
View Article and Find Full Text PDFProgesterone (P4) is a neuroactive hormone having pleiotropic effects, supporting its pharmacological potential to treat global (cardiac-arrest-related) cerebral ischemia, a condition associated with an elevated risk of dementia. This review examines the current biochemical, morphological, and functional evidence showing the neuroprotective/neurorestorative effects of P4 against global cerebral ischemia (GCI). Experimental findings show that P4 may counteract pathophysiological mechanisms and/or regulate endogenous mechanisms of plasticity induced by GCI.
View Article and Find Full Text PDFThe presence of insoluble aggregates of amyloid β (Aβ) in the form of neuritic plaques (NPs) is one of the main features that define Alzheimer's disease. Studies have suggested that the accumulation of these peptides in the brain significantly contributes to extensive neuronal loss. Furthermore, the content and distribution of cholesterol in the membrane have been shown to have an important effect on the production and subsequent accumulation of Aβ peptides in the plasma membrane, contributing to dysfunction and neuronal death.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most common neurodegenerative disorder and its prevalence is increasing. Nowadays, very few drugs effectively reduce AD symptoms and thus, a better understanding of its pathophysiology is vital to design new effective schemes. Presymptomatic neuronal damage caused by the accumulation of Amyloid β peptide and Tau protein abnormalities remains a challenge, despite recent efforts in drug development.
View Article and Find Full Text PDFSalud Publica Mex
May 2021
Objective: To determine distribution, localization and frequency variations of astrocytic tumors (AT) in a Mexican Institute of neurology.
Materials And Methods: Institutional registries of AT from five decades were analyzed. AT/ Surgical discharges (SD) and AT/Central Nervous System Tumors (CNST) from 1995 to 2014 were compared.
Objective: To determine the frequency of central nervous system (CNS) tumors in the first fifty years of the National Institute of Neurology and Neurosurgery of Mexico Manuel Velasco Suárez (Instituto Nacional de Neurología y Neurocirugía de México, INNN) from 1965 to 2014.
Materials And Methods: A total of 16 116 institutional records of CNS tumors were analyzed. The frequency and distribution of CNS tumors were evaluated by tumor type, patient age and patient gender.
Background: Enhanced EGF receptor (EGFR) signaling is a hallmark of many human cancers, though the role of enhanced EGFR signaling within the surrounding tumor stroma has not been well studied. The myofibroblast is an important stromal cell that demonstrates enhanced EGFR expression in the setting of inflammation, though the functional relevance is not known. We recently reported that TNF-α and the G protein-coupled receptor (GPCR) agonist lysophosphatidic acid (LPA) lead to synergistic cyclo-oxygenase-2 (COX-2) expression, an enzyme strongly associated with the development of colitis-associated cancer.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
April 2012
The myofibroblast has recently been identified as an important mediator of tumor necrosis factor-α (TNF-α)-associated colitis and cancer, but the mechanism(s) involved remains incompletely understood. Recent evidence suggests that TNF-α is a central regulator of multiple inflammatory signaling cascades. One important target of TNF-α may be the signaling pathway downstream of the epidermal growth factor receptor (EGFR), which has been associated with many human cancers.
View Article and Find Full Text PDFStromal myofibroblasts regulate extracellular matrix components through the secretion of matrix metalloproteinases such as MMP-3. Both myofibroblasts and MMP-3 have been implicated in colonic inflammation and cancer but the regulatory signaling mechanism(s) are unknown. Exposure of the human colonic myofibroblast cell line 18Co to TNF-α and bradykinin induced synergistic MMP-3 mRNA and protein expression, which were blocked by the preferential PKC inhibitors GF109203X and Go6983 and by the MEK inhibitor U0126.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
April 2011
The myofibroblast (MFB) has recently been identified as an important mediator of tumor necrosis factor-α (TNF-α)-associated colitis and cancer, but the mechanism(s) involved remains incompletely understood. Here, we show that treatment of 18Co cells, a model of human colonic MFBs, with TNF-α and lysophosphatidic acid (LPA) induced striking synergistic cyclooxygenase-2 (COX-2) protein expression and production of PGE(2). This effect was prevented by the LPA(1) receptor antagonist Ki16425, the G(iα)-specific inhibitor pertussis toxin, and by the preferential protein kinase (PK) C inhibitors GF109203X and Go6983.
View Article and Find Full Text PDF