Publications by authors named "Ciro Rodriguez"

Objectives: This review aims to evaluate several convolutional neural network (CNN) models applied to breast cancer detection, to identify and categorize CNN variants in recent studies, and to analyze their specific strengths, limitations, and challenges.

Methods: Using PRISMA methodology, this review examines studies that focus on deep learning techniques, specifically CNN, for breast cancer detection. Inclusion criteria encompassed studies from the past five years, with duplicates and those unrelated to breast cancer excluded.

View Article and Find Full Text PDF

Oral bone defects occur as a result of trauma, cancer, infections, periodontal diseases, and caries. Autogenic and allogenic grafts are the gold standard used to treat and regenerate damaged or defective bone segments. However, these materials do not possess the antimicrobial properties necessary to inhibit the invasion of the numerous deleterious pathogens present in the oral microbiota.

View Article and Find Full Text PDF

In this paper, we introduce the design and manufacturing process of a transtibial orthopedic implant. We used medical-grade polyurethane polymer resin to fabricate a 3D porous architected implant with tunable isotropy, employing a high-speed printing method known as Continuous Liquid Interface Production (CLIP). Our objective is to enhance the weight-bearing capabilities of the bone structures in the residual limb, thereby circumventing the traditional reliance on a natural bridge.

View Article and Find Full Text PDF

As bioprinting advances into clinical relevance with patient-specific tissue and organ constructs, it must be capable of multi-material fabrication at high resolutions to accurately mimick the complex tissue structures found in the body. One of the most fundamental structures to regenerative medicine is microvasculature. Its continuous hierarchical branching vessel networks bridge surgically manipulatable arteries (∼1-6 mm) to capillary beds (∼10m).

View Article and Find Full Text PDF

The dip coating process is one of the recognized techniques used to generate polymeric coatings on stents in an easy and low-cost way. However, there is a lack of information about the influence of the process parameters of this technique on complex geometries such as stents. This paper studies the dip coating process parameters used to provide a uniform coating of PLA with a 4-10 µm thickness.

View Article and Find Full Text PDF

Strategies to stir and mix reagents in microfluid devices have evolved concomitantly with advancements in manufacturing techniques and sensing. While there is a large array of reported designs to combine and homogenize liquids, most of the characterization has been focused on setups with two inlets and one outlet. While this configuration is helpful to directly evaluate the effects of features and parameters on the mixing degree, it does not portray the conditions for experiments that involve more than two substances required to be subsequently combined.

View Article and Find Full Text PDF

The study evaluated microbial and Potentially Toxic Elements-PTEs risks in high Andean river water in Peru using Monte Carlo simulation. A total of 144 water samples were collected from four rivers and evaluated for physicochemical parameters, PTEs and bacterial pathogens. The microbial risk analysis for exposure to pathogens present in the water was based on the probability of occurrence of diseases associated with Escherichia coli, Pseudomonas aeruginosa and enterococci.

View Article and Find Full Text PDF

Over the last few years, the research fields of intelligent learning systems have been improving the process of learning systems. Smart Tutoring System-(STS) applications have been used in e-learning. The results signify the importance of the learner's engagement in customizing a model.

View Article and Find Full Text PDF

The growth of additive manufacturing processes has enabled the production of complex and smart structures. These fabrication techniques have led research efforts to focus on the application of cellular materials, which are known for their thermal and mechanical benefits. Herein, we studied the mechanical behavior of stainless-steel (AISI 316L) lattice structures both experimentally and computationally.

View Article and Find Full Text PDF

Light-based bioprinter manufacturing technology is still prohibitively expensive for organizations that rely on accessing three-dimensional biological constructs for research and tissue engineering endeavors. Currently, most of the bioprinting systems are based on commercial-grade-based systems or modified DIY (do it yourself) extrusion apparatuses. However, to date, few examples of the adoption of low-cost equipment have been found for light-based bioprinters.

View Article and Find Full Text PDF

Human skin is characterized by rough, elastic, and uneven features that are difficult to recreate using conventional manufacturing technologies and rigid materials. The use of soft materials is a promising alternative to produce devices that mimic the tactile capabilities of biological tissues. Although previous studies have revealed the potential of fillers to modify the properties of composite materials, there is still a gap in modeling the conductivity and mechanical properties of these types of materials.

View Article and Find Full Text PDF

Globally, the leading causes of natural death are attributed to coronary heart disease and type 1 and type 2 diabetes. High blood pressure levels, high cholesterol levels, smoking, and poor eating habits lead to the agglomeration of plaque in the arteries, reducing the blood flow. The implantation of devices used to unclog vessels, known as stents, sometimes results in a lack of irrigation due to the excessive proliferation of endothelial tissue within the blood vessels and is known as restenosis.

View Article and Find Full Text PDF

In this article, a recent formulation for real-time simulation is developed combining the strain energy density of the Spring Mass Model (SMM) with the equivalent representation of the Strain Energy Density Function (SEDF). The resulting Equivalent Energy Spring Model (EESM) is expected to provide information in real-time about the mechanical response of soft tissue when subjected to uniaxial deformations. The proposed model represents a variation of the SMM and can be used to predict the mechanical behavior of biological tissues not only during loading but also during unloading deformation states.

View Article and Find Full Text PDF

The strategy of embedding conductive materials on polymeric matrices has produced functional and wearable artificial electronic skin prototypes capable of transduction signals, such as pressure, force, humidity, or temperature. However, these prototypes are expensive and cover small areas. This study proposes a more affordable manufacturing strategy for manufacturing conductive layers with 6 × 6 matrix micropatterns of RTV-2 silicone rubber and Single-Walled Carbon Nanotubes (SWCNT).

View Article and Find Full Text PDF

A novel manufacturing approach was used to fabricate metallic scaffolds. A calibration of the laser cutting process was performed using the kerf width compensation in the calculations of the tool trajectory. Welding defects were studied through X-ray microtomography.

View Article and Find Full Text PDF

Laparoscopic surgery demands highly skilled surgeons. Traditionally, a surgeon's knowledge is acquired by operating under a mentor-trainee method. In recent years, laparoscopic simulators have gained ground as tools in skill acquisition.

View Article and Find Full Text PDF

The interplay between a prosthetic and tissue represents an important factor for the fixation of orthopedic implants. Laser texturing tests and electropolishing were performed on two materials used in the fabrication of medical devices, i.e.

View Article and Find Full Text PDF

In this paper, we characterized an assortment of photopolymers and stereolithography processes to produce 3D-printed molds and polydimethylsiloxane (PDMS) castings of micromixing devices. Once materials and processes were screened, the validation of the soft tooling approach in microfluidic devices was carried out through a case study. An asymmetric split-and-recombine device with different cross-sections was manufactured and tested under different regime conditions (10 < < 70).

View Article and Find Full Text PDF

The use of hybrid manufacturing to produce bimodal scaffolds has represented a great advancement in tissue engineering. These scaffolds provide a favorable environment in which cells can adhere and produce new tissue. However, there are several areas of opportunity to manufacture structures that provide enough strength and rigidity, while also improving chemical integrity.

View Article and Find Full Text PDF

This paper introduces the concept of continuous chaotic printing, i.e. the use of chaotic flows for deterministic and continuous extrusion of fibers with internal multilayered micro- or nanostructures.

View Article and Find Full Text PDF

Background: Despite preventive methods and careful surgical technique, surgical site infection and incisional hernias are of main concern after the closure of surgical incisions and keep haunting abdominal wall wound healing. The aim of this study is to find how surgical expertise level modifies biomechanical properties of sutures commonly used in abdominal wall fascial closure (polypropylene, polyglactin 910, polydioxanone).

Materials And Methods: Surgery residents with different experience levels performed abdominal wall fascial closure in swine models with the previously mentioned suture materials.

View Article and Find Full Text PDF

The role of 3D printing in the biomedical field is growing. In this context, photocrosslink-based 3D printing procedures for resorbable polymers stand out. Despite much work, more studies are needed on photocuring stereochemistry, new resin additives, new polymers and resin components.

View Article and Find Full Text PDF

Currently, electrospinning membranes for vascular graft applications has been limited, due to random fiber alignment, to use in mandrel-spun, straight tubular shapes. However, straight, circular tubes with constant diameters are rare in the body. This study presents a method to fabricate curved, non-circular, and bifurcated vascular grafts based on electrospinning.

View Article and Find Full Text PDF

In this work we present a novel algorithm for generating in-silico biomimetic models of a cortical bone microstructure towards manufacturing biomimetic bone via additive manufacturing. The software provides a tool for physicians or biomedical engineers to develop models of cortical bone that include the inherent complexity of the microstructure. The correspondence of the produced virtual prototypes with natural bone tissue was assessed experimentally employing Digital Light Processing (DLP) of a thermoset polymer resin to recreate healthy and osteoporotic bone tissue microstructure.

View Article and Find Full Text PDF