Publications by authors named "Ciro Mercurio"

Targeting nuclear mechanics is emerging as a promising therapeutic strategy for sensitizing cancer cells to immunotherapy. Inhibition of the mechano-sensory kinase ATR leads to mechanical vulnerability of cancer cells, causing nuclear envelope softness and collapse and activation of the cGAS-STING-mediated innate immune response. Finding novel compounds that interfere with the non-canonical role of ATR in controlling nuclear mechanics presents an intriguing therapeutic opportunity.

View Article and Find Full Text PDF

The lysine-specific histone demethylase 1 A (LSD1) is involved in antitumor immunity; however, its role in shaping CD8 + T cell (CTL) differentiation and function remains largely unexplored. Here, we show that pharmacological inhibition of LSD1 (LSD1i) in CTL in the context of adoptive T cell therapy (ACT) elicits phenotypic and functional alterations, resulting in a robust antitumor immunity in preclinical models in female mice. In addition, the combination of anti-PDL1 treatment with LSD1i-based ACT eradicates the tumor and leads to long-lasting tumor-free survival in a melanoma model, complementing the limited efficacy of the immune or epigenetic therapy alone.

View Article and Find Full Text PDF

Replication origin assembly is a pivotal step in chromosomal DNA replication. In this process, the ORC complex binds DNA and, together with the CDC6 and CDT1, promotes the loading of the MCM helicase. Chemicals targeting origin assembly might be useful to sensitize highly proliferative cancer cells.

View Article and Find Full Text PDF

Macropinocytosis is a cellular process that enables cells to engulf extracellular material, such as nutrients, growth factors, and even whole cells. It is involved in several physiological functions as well as pathological conditions. In cancer cells, macropinocytosis plays a crucial role in promoting tumor growth and survival under nutrient-limited conditions.

View Article and Find Full Text PDF
Article Synopsis
  • - Copy number variations at the 7q11.23 chromosome region can lead to different neurodevelopmental disorders, with deletions causing Williams-Beuren syndrome (characterized by extreme sociability) and duplications leading to 7q11.23 microduplication syndrome (often associated with autism spectrum disorder).
  • - Research revealed that the gene
  • LSD1
  • plays a critical role in mediating the cognitive and behavioral symptoms related to these disorders, though its exact functions in brain development are still not fully understood.
  • - Studies using patient-derived brain organoids and transgenic mice showed that dosage changes of 7q11.23 genes disrupt neural progenitor cell behavior and neuron development, leading to autism-like traits, but
View Article and Find Full Text PDF

Alternative lengthening of telomeres (ALT) is a telomere maintenance mechanism activated in ~10-15% of cancers, characterized by telomeric damage. Telomeric damage-induced long non-coding RNAs (dilncRNAs) are transcribed at dysfunctional telomeres and contribute to telomeric DNA damage response (DDR) activation and repair. Here we observed that telomeric dilncRNAs are preferentially elevated in ALT cells.

View Article and Find Full Text PDF

After over 30 years of research, the development of HDAC inhibitors led to five FDA/Chinese FDA-approved drugs and many others under clinical or preclinical investigation to treat cancer and non-cancer diseases. Herein, based on our recent development of pyridine-based isomers as HDAC inhibitors, we report a series of novel 5-acylamino-2-pyridylacrylic- and -picolinic hydroxamates and 2'-aminoanilides 5-8 as anticancer agents. The hydroxamate 5d proved to be quite HDAC3/6-selective exhibiting IC values of 80 and 11 nM, respectively, whereas the congener 5e behaved as inhibitor of HDAC1-3, -6, -8, and -10 (class I/IIb-selective inhibitor) at nanomolar level.

View Article and Find Full Text PDF

Glioblastoma (GBM) is a fatal tumor whose aggressiveness, heterogeneity, poor blood-brain barrier penetration, and resistance to therapy highlight the need for new targets and clinical treatments. A step toward clinical translation includes the eradication of GBM tumor-initiating cells (TICs), responsible for GBM heterogeneity and relapse. By using patient-derived TICs and xenograft orthotopic models, we demonstrated that the selective lysine-specific histone demethylase 1 inhibitor DDP_38003 (LSD1i) is able to penetrate the brain parenchyma in vivo in preclinical models, is well tolerated, and exerts antitumor activity in molecularly different GBMs.

View Article and Find Full Text PDF

Starting from the N-hydroxy-3-(4-(2-phenylbutanoyl)amino)phenyl)acrylamide (5 b) previously described by us as a HDAC inhibitor, we prepared four aza-analogues, 6-8, 9 b, as regioisomers containing the pyridine nucleus. Preliminary screening against mHDAC1 highlighted the N-hydroxy-5-(2-(2-phenylbutanoyl)amino)pyridyl)acrylamide (9 b) as the most potent inhibitor. Thus, we further developed both pyridylacrylic- and nicotinic-based hydroxamates (9 a, 9 c-f, and 11 a-f) and 2'-aminoanilides (10 a-f and 12 a-f), related to 9 b, to be tested against HDACs.

View Article and Find Full Text PDF

Background: Autism spectrum disorder (ASD) is a highly prevalent neurodevelopmental condition affecting almost 1% of children, and represents a major unmet medical need with no effective drug treatment available. Duplication at 7q11.23 (7Dup), encompassing 26-28 genes, is one of the best characterized ASD-causing copy number variations and offers unique translational opportunities, because the hemideletion of the same interval causes Williams-Beuren syndrome (WBS), a condition defined by hypersociability and language strengths, thereby providing a unique reference to validate treatments for the ASD symptoms.

View Article and Find Full Text PDF

Lysine-specific demethylase 1 (LSD1 or KDM1A) is a FAD-dependent enzyme that acts as a transcription corepressor or coactivator by regulating the methylation status of histone H3 lysines K4 and K9, respectively. KDM1A represents an attractive target for cancer therapy. While, in the past, the main medicinal chemistry strategy toward KDM1A inhibition was based on the optimization of ligands that irreversibly bind the FAD cofactor within the enzyme catalytic site, we and others have also identified reversible inhibitors.

View Article and Find Full Text PDF

The histone demethylase LSD1 is deregulated in several tumors, including leukemias, providing the rationale for the clinical use of LSD1 inhibitors. In acute promyelocytic leukemia (APL), pharmacological doses of retinoic acid (RA) induce differentiation of APL cells, triggering degradation of the PML-RAR oncogene. APL cells are resistant to LSD1 inhibition or knockout, but targeting LSD1 sensitizes them to physiological doses of RA without altering of PML-RAR levels, and extends survival of leukemic mice upon RA treatment.

View Article and Find Full Text PDF

LSD1 is a lysine demethylase highly involved in initiation and development of cancer. To design highly effective covalent inhibitors, a strategy is to fill its large catalytic cleft by designing tranylcypromine (TCP) analogs decorated with long, hindered substituents. We prepared three series of TCP analogs, carrying aroyl- and arylacetylamino (1 a-h), Z-amino acylamino (2 a-o), or double-substituted benzamide (3 a-n) residues at the C4 or C3 position of the phenyl ring.

View Article and Find Full Text PDF

We designed new 3-arylthio- and 3-aroyl-1H-indole derivatives 3-22 bearing a heterocyclic ring at position 5, 6 or 7 of the indole nucleus. The 6- and 7-heterocyclyl-1H-indoles showed potent inhibition of tubulin polymerization, binding of colchicine to tubulin and growth of MCF-7 cancer cells. Compounds 13 and 19 inhibited a panel of cancer cells and the NCI/ADR-RES multidrug resistant cell line at low nanomolar concentrations.

View Article and Find Full Text PDF

Background: Histone lysine demethylases (KDMs) are well-recognized targets in oncology drug discovery. They function at the post-translation level controlling chromatin conformation and gene transcription. KDM1A is a flavin adenine dinucleotide-dependent amine oxidase, overexpressed in several tumor types, including acute myeloid leukemia, neuroblastoma and non-small-cell lung cancer.

View Article and Find Full Text PDF

We designed 3-aroyl-1,4-diarylpyrrole (ARDAP) derivatives as potential anticancer agents having different substituents at the 1- or 4-phenyl ring. ARDAP compounds exhibited potent inhibition of tubulin polymerization, binding of colchicine to tubulin, and cancer cell growth. ARDAP derivative inhibited the proliferation of BCR/ABL-expressing KU812 and LAMA84 cells from chronic myeloid leukemia (CML) patients in blast crisis and of hematopoietic cells ectopically expressing the imatinib mesylate (IM)-sensitive KBM5-WT or its IM-resistant KBM5-T315I mutation.

View Article and Find Full Text PDF

The balance of methylation levels at histone H3 lysine 4 (H3K4) is regulated by KDM1A (LSD1). KDM1A is overexpressed in several tumor types, thus representing an emerging target for the development of novel cancer therapeutics. We have previously described ( Part 1, DOI 10.

View Article and Find Full Text PDF

Lysine specific demethylase 1 KDM1A (LSD1) regulates histone methylation and it is increasingly recognized as a potential therapeutic target in oncology. We report on a high-throughput screening campaign performed on KDM1A/CoREST, using a time-resolved fluorescence resonance energy transfer (TR-FRET) technology, to identify reversible inhibitors. The screening led to 115 hits for which we determined biochemical IC, thus identifying four chemical series.

View Article and Find Full Text PDF

Most patients who initially respond to treatment with the multi-tyrosine kinase inhibitor sunitinib eventually relapse. Therefore, developing a deeper understanding of the contribution of sunitinib's numerous targets to the clinical response or to resistance is crucial. Here, we have shown that cancer cells respond to clinically relevant doses of sunitinib by enhancing the stability of the antiapoptotic protein MCL-1 and inducing mTORC1 signaling, thus evoking little cytotoxicity.

View Article and Find Full Text PDF

The Jumonji C (JmjC) domain containing histone lysine demethylases have a clear role both in the development and in some diseases including inflammation and cancer. The histone lysine demethylases represent an attractive target for the identification of therapeutic agents and the pyridine derivatives are a scaffolds largely investigated for the identification and development of inhibitors of enzymes of the Jumonji family. This commentary is a scientific evaluation of a patent application US20160102096A1 that describes novel pyridine derivatives in which the introduction of specific substituents is used to modulate the selectivity profile of the inhibitors.

View Article and Find Full Text PDF

We report the stereoselective synthesis and biological activity of a novel series of tranylcypromine (TCPA) derivatives (14a-k, 15, 16), potent inhibitors of KDM1A. The new compounds strongly inhibit the clonogenic potential of acute leukemia cell lines. In particular three molecules (14d, 14e, and 14g) showing selectivity versus MAO A and remarkably inhibiting colony formation in THP-1 human leukemia cells, were assessed in mouse for their preliminary pharmacokinetic.

View Article and Find Full Text PDF

In the last decades, inhibitors of histone deacetylases (HDAC) have become an important class of anti-cancer agents. In a previous study we described the synthesis of spiro[chromane-2,4'-piperidine]hydroxamic acid derivatives able to inhibit histone deacetylase enzymes. Herein, we present our exploration for new derivatives by replacing the piperidine moiety with various cycloamines.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed 39 new compounds based on 2-phenylindole, designed to fight cancer, featuring various substituents and bridging groups.
  • The most promising compounds, 33 and 44, effectively inhibited the growth of resistant cancer cell lines and stimulated immune cell activity at low concentrations.
  • These compounds also caused significant cell cycle arrest in HeLa cells and inhibited key cancer signaling pathways, suggesting their potential as anticancer agents.
View Article and Find Full Text PDF

The pure enantiomers of the N-(2-, 3-, and 4-(2-aminocyclopropyl)phenyl)benzamides hydrochlorides 11a-j were prepared and tested against LSD1 and MAO enzymes. The evaluation of the regioisomers 11a-j highlighted a net increase of the anti-LSD1 potency by shifting the benzamide moiety from ortho to meta and mainly to para position of tranylcypromine phenyl ring, independently from their trans or cis stereochemistry. In particular, the para-substituted 11a,b (trans) and 11g,h (cis) compounds displayed LSD1 and MAO-A inhibition at low nanomolar levels, while were less potent against MAO-B.

View Article and Find Full Text PDF