Theory questions the persistence of nonreciprocal interactions in which one plant has a positive net effect on a neighbor that, in return, has a negative net impact on its benefactor - a phenomenon known as antagonistic facilitation. We develop a spatially explicit consumer-resource model for belowground plant competition between ecosystem engineers, plants able to mine resources and make them available for any other plant in the community, and exploiters. We use the model to determine in what environmental conditions antagonistic facilitation via soil-resource engineering emerges as an optimal strategy.
View Article and Find Full Text PDFFront Plant Sci
August 2022
Fine root density in the soil is a plant functional trait of paramount importance for plant ecology and agriculture. Fine root proliferation by plants involves complex plant strategies that may depend on various abiotic and biotic factors. Concretely, the root tragedy of the commons (RToC) is a behavioral strategy predicted by game theory models in which interacting plants forage for soil resources inefficiently.
View Article and Find Full Text PDFThe exploitative segregation of plant roots (ESPR) is a theory that uses a game-theoretical model to predict plant root foraging behavior in space. The original model returns the optimal root distribution assuming exploitative competition between a pair of identical plants in soils with homogeneous resource dynamics. In this short communication, we explore avenues to develop this model further.
View Article and Find Full Text PDFPlant roots determine carbon uptake, survivorship, and agricultural yield and represent a large proportion of the world's vegetation carbon pool. Study of belowground competition, unlike aboveground shoot competition, is hampered by our inability to observe roots. We developed a consumer-resource model based in game theory that predicts the root density spatial distribution of individual plants and tested the model predictions in a greenhouse experiment.
View Article and Find Full Text PDFNitrogen (N) deposition due to anthropogenic pollution is a major driver of the global biodiversity loss. We studied the effect of experimental N and phosphorus (P) fertilization (0, 10, 20, and 50 kg N ha year and 14 kg P ha year over the background deposition levels) on plant cover dynamics of a rosemary (Rosmarinus officinalis L.) shrubland after 8 years of nutrient addition in a semiarid Mediterranean ecosystem from Central Spain.
View Article and Find Full Text PDF