Alloys with superior properties represent the main topic of recent studies due to their effectiveness in reducing the cost of equipment maintenance and enhancing usage time, in addition to other benefits in domains such as geothermal, marine, and airspace. AlCrFeNiTi was produced by solid state processing in a planetary ball mill, with the objective of obtaining a high alloying degree and a homogenous composition that could be further processed by pressing and sintering. The metallic powder was technologically characterized, indicating a particle size reduction following mechanical alloying processing when compared to the elemental raw powder materials.
View Article and Find Full Text PDFHigh-entropy alloys (HEAs) gained interest in the field of biomedical applications due to their unique effects and to the combination of the properties of the constituent elements. In addition to the required property of biocompatibility, other requirements include properties such as mechanical resistance, bioactivity, sterility, stability, cost effectiveness, etc. For this paper, a biocompatible high-entropy alloy, defined as bio-HEA by the literature, can be considered as an alternative to the market-available materials due to their superior properties.
View Article and Find Full Text PDFThe main objective of this study was to develop a high-entropy alloy (HEA) derived from the CoCrFeNiTi HEA system (x = 0.5, 1) for protective coatings using the magnetron sputtering method. In order to produce the high-entropy alloy targets required for the magnetron sputtering process, mechanically alloyed metallic powders were consolidated via spark plasma sintering (SPS).
View Article and Find Full Text PDFThe aim of the present paper is to investigate an innovative high corrosion resistance coating realized by electrospark deposition. The coating material was fabricated from HfNbTaTiZr high-entropy alloy. HEA was produced by the mechanical alloying of Hf, Nb, Ta, Ti, and Zr high-purity powders in a planetary ball mill, achieving a good homogenization and a high alloying degree, followed by spark plasma sintering consolidation.
View Article and Find Full Text PDF