Publications by authors named "Cinzia Pizzi"

Alignment-free analysis of sequences has revolutionized the high-throughput processing of sequencing data within numerous bioinformatics pipelines. Hashing k-mers represents a common function across various alignment-free applications, serving as a crucial tool for indexing, querying, and rapid similarity searching. More recently, spaced seeds, a specialized pattern that accommodates errors or mutations, have become a standard choice over traditional k-mers.

View Article and Find Full Text PDF

Current technologies allow the sequencing of microbial communities directly from the environment without prior culturing. One of the major problems when analyzing a microbial sample is to taxonomically annotate its reads to identify the species it contains. The major difficulties of taxonomic analysis are the lack of taxonomically related genomes in existing reference databases, the uneven abundance ratio of species, and sequencing errors.

View Article and Find Full Text PDF

The study of microbial communities crucially relies on the comparison of metagenomic next-generation sequencing data sets, for which several methods have been designed in recent years. Here, we review three key challenges in the comparison of such data sets: species identification and quantification, the efficient computation of distances between metagenomic samples and the identification of metagenomic features associated with a phenotype such as disease status. We present current solutions for such challenges, considering both reference-based methods relying on a database of reference genomes and reference-free methods working directly on all sequencing reads from the samples.

View Article and Find Full Text PDF

Estimating the abundances of all -mers in a set of biological sequences is a fundamental and challenging problem with many applications in biological analysis. Although several methods have been designed for the exact or approximate solution of this problem, they all require to process the entire data set, which can be extremely expensive for high-throughput sequencing data sets. Although in some applications it is crucial to estimate all -mers and their abundances, in other situations it may be sufficient to report only -mers, which appear with relatively high frequency in a data set.

View Article and Find Full Text PDF

Background: Spaced-seeds, i.e. patterns in which some fixed positions are allowed to be wild-cards, play a crucial role in several bioinformatics applications involving substrings counting and indexing, by often providing better sensitivity with respect to k-mers based approaches.

View Article and Find Full Text PDF

Background: Patterns with wildcards in specified positions, namely , are increasingly used instead of -mers in many bioinformatics applications that require indexing, querying and rapid similarity search, as they can provide better sensitivity. Many of these applications require to compute the hashing of each position in the input sequences with respect to the given spaced seed, or to multiple spaced seeds. While the hashing of -mers can be rapidly computed by exploiting the large overlap between consecutive -mers, spaced seeds hashing is usually computed from scratch for each position in the input sequence, thus resulting in slower processing.

View Article and Find Full Text PDF

Background: In recent years several different fields, such as ecology, medicine and microbiology, have experienced an unprecedented development due to the possibility of direct sequencing of microbioimic samples. Among problems that researchers in the field have to deal with, taxonomic classification of metagenomic reads is one of the most challenging. State of the art methods classify single reads with almost 100% precision.

View Article and Find Full Text PDF

Entropy, being closely related to repetitiveness and compressibility, is a widely used information-related measure to assess the degree of predictability of a sequence. Entropic profiles are based on information theory principles, and can be used to study the under-/over-representation of subwords, by also providing information about the scale of conserved DNA regions. Here, we focus on the algorithmic aspects related to entropic profiles.

View Article and Find Full Text PDF

Motivation: Sequencing technologies allow the sequencing of microbial communities directly from the environment without prior culturing. Taxonomic analysis of microbial communities, a process referred to as binning, is one of the most challenging tasks when analyzing metagenomic reads data. The major problems are the lack of taxonomically related genomes in existing reference databases, the uneven abundance ratio of species and the limitations due to short read lengths and sequencing errors.

View Article and Find Full Text PDF

Background: Measuring sequence similarity is central for many problems in bioinformatics. In several contexts alignment-free techniques based on exact occurrences of substrings are faster, but also less accurate, than alignment-based approaches. Recently, several studies attempted to bridge the accuracy gap with the introduction of approximate matches in the definition of composition-based similarity measures.

View Article and Find Full Text PDF

Background: The discovery of surprisingly frequent patterns is of paramount interest in bioinformatics and computational biology. Among the patterns considered, those consisting of pairs of solid words that co-occur within a prescribed maximum distance -or gapped factors- emerge in a variety of contexts of DNA and protein sequence analysis. A few algorithms and tools have been developed in connection with specific formulations of the problem, however, none can handle comprehensively each of the multiple ways in which the distance between the two terms in a pair may be defined.

View Article and Find Full Text PDF

Position weight matrices are an important method for modeling signals or motifs in biological sequences, both in DNA and protein contexts. In this paper, we present fast algorithms for the problem of finding significant matches of such matrices. Our algorithms are of the online type, and they generalize classical multipattern matching, filtering, and superalphabet techniques of combinatorial string matching to the problem of weight matrix matching.

View Article and Find Full Text PDF

Unlabelled: MOODS (MOtif Occurrence Detection Suite) is a software package for matching position weight matrices against DNA sequences. MOODS implements state-of-the-art online matching algorithms, achieving considerably faster scanning speed than with a simple brute-force search. MOODS is written in C++, with bindings for the popular BioPerl and Biopython toolkits.

View Article and Find Full Text PDF

The problem of detecting DNA motifs with functional relevance in real biological sequences is difficult due to a number of biological, statistical and computational issues and also because of the lack of knowledge about the structure of searched patterns. Many algorithms are implemented in fully automated processes, which are often based upon a guess of input parameters from the user at the very first step. In this paper, we present a novel method for the detection of seeded DNA motifs, composed by regions with a different extent of variability.

View Article and Find Full Text PDF

Background: Searching for approximate patterns in large promoter sequences frequently produces an exceedingly high numbers of results. Our aim was to exploit biological knowledge for definition of a sheltered search space and of appropriate search parameters, in order to develop a method for identification of a tractable number of sequence motifs.

Results: Novel software (COOP) was developed for extraction of sequence motifs, based on clustering of exact or approximate patterns according to the frequency of their overlapping occurrences.

View Article and Find Full Text PDF