Publications by authors named "Cinzia M Muzzi"

Previous studies of 5,10,15,20-tetraarylporphyrins have shown that the barrier for meso aryl-porphyrin rotation (DeltaG++(ROT)) varies as a function of the core substituent M and is lower for a small metal (M = Ni) compared to a large metal (M = Zn) and for a dication (M = 4H(2+)) versus a free base porphyrin (M = 2H). This has been attributed to changes in the nonplanar distortion of the porphyrin ring and the deformability of the macrocycle caused by the core substituent. In the present work, X-ray crystallography, molecular mechanics (MM) calculations, and variable temperature (VT) (1)H NMR spectroscopy are used to examine the relationship between the aryl-porphyrin rotational barrier and the core substituent M in some novel 2,3,5,7,8,10,12,13,15,17,18,20-dodecaarylporphyrins (DArPs), and specifically in some 5,10,15,20-tetraaryl-2,3,7,8,12,13,17,18-octaphenylporphyrins (TArOPPs), where steric crowding of the peripheral groups always results in a very nonplanar macrocycle.

View Article and Find Full Text PDF

With the aim of better understanding the electronic and structural factors which govern electron-transfer processes in porphyrins, the electrochemistry of 29 nickel(II) porphyrins has been examined in dichloromethane containing either 0.1 M tetra-n-butylammonium perchlorate (TBAP) or tetra-n-butylammonium hexafluorophosphate (TBAPF(6)) as supporting electrolyte. Half-wave potentials for the first oxidation and first reduction are only weakly dependent on the supporting electrolyte, but E(1/2) for the second oxidation varies considerably with the type of supporting electrolyte.

View Article and Find Full Text PDF