Publications by authors named "Cinzia Garuti"

Hepcidin, the hepatic iron hormone, is the central regulator of iron homeostasis. Cyclic AMP-Responsive Element-Binding protein 3-like 3 (CREB3L3/CREB-H) is a liver homeostatic regulator of essential nutrients (i.e.

View Article and Find Full Text PDF

Background And Aim: Notwithstanding the improvement in therapies, patients affected by thalassemia major (TM) and intermedia (TI) are still at high risk of cardiac complications. This study aimed at evaluating the incidence and predictive factors for developing cardiac events in adult β-TM and TI patients.

Population And Methods: Data on diagnosis and clinical history were collected retrospectively; prospective data on new-onset cardiac failure and arrhythmias, echocardiographic parameters, biochemical variables including non-transferrin-bound iron (NTBI) and labile plasma iron (LPI), magnetic resonance imaging (MRI) T2* measurement of hepatic and cardiac iron deposits, and iron chelation therapy were recorded during a 6-year follow-up.

View Article and Find Full Text PDF

Unlabelled: Ferroportin (FPN1) is the sole iron exporter in mammals, but its cell-specific function and regulation are still elusive. This study examined FPN1 expression in human macrophages, the cells that are primarily responsible on a daily basis for plasma iron turnover and are central in the pathogenesis of ferroportin disease (FD), the disease attributed to lack-of-function FPN1 mutations. We characterized FPN1 protein expression and traffic by confocal microscopy, western blotting, gel filtration, and immunoprecipitation studies in macrophages from control blood donors (donor) and patients with either FPN1 p.

View Article and Find Full Text PDF

Hepcidin, the iron hormone, is regulated by a number of stimulatory and inhibitory signals. The cAMP responsive element binding protein 3-like 3 (CREB3L3) mediates hepcidin response to endoplasmic reticulum (ER) stress. In this study we asked whether hepcidin response to ER stress also requires the small mother against decapentaplegic (SMAD)-1/5/8 pathway, which has a major role in hepcidin regulation in response to iron and other stimuli.

View Article and Find Full Text PDF

Background & Aims: Hepatic gluconeogenesis provides fuel during starvation, and is abnormally induced in obese individuals or those with diabetes. Common metabolic disorders associated with active gluconeogenesis and insulin resistance (obesity, metabolic syndrome, diabetes, and nonalcoholic fatty liver disease) have been associated with alterations in iron homeostasis that disrupt insulin sensitivity and promote disease progression. We investigated whether gluconeogenic signals directly control Hepcidin, an important regulator of iron homeostasis, in starving mice (a model of persistently activated gluconeogenesis and insulin resistance).

View Article and Find Full Text PDF

Human hemochromatosis (HC) has been associated with the common C282Y polymorphism of HFE or rare pathogenic mutations of TfR2, HJV, FPN and HAMP. All forms of human HC seem to be caused by low or inadequate levels of hepcidin, the iron hormone. We and others have recently shown that Hfe(-/-) mice exhibit an impairment in the bone morphogenetic protein (BMP) signaling pathway controlling hepcidin.

View Article and Find Full Text PDF

Background & Aims: Abnormal hepcidin regulation is central to the pathogenesis of HFE hemochromatosis. Hepatic bone morphogenetic protein 6 (BMP6)-SMAD signaling is a main regulatory mechanism controlling hepcidin expression, and this pathway was recently shown to be impaired in Hfe knockout (Hfe(-/-)) mice. To more definitively determine whether HFE regulates hepcidin expression through an interaction with the BMP6-SMAD signaling pathway, we investigated whether hepatic Hfe overexpression activates the BMP6-SMAD pathway to induce hepcidin expression.

View Article and Find Full Text PDF

Background & Aims: Hemochromatosis is a common hereditary disease caused by mutations in HFE and characterized by increased absorption of iron in the intestine. However, the intestine does not appear to be the site of mutant HFE activity in the disease; we investigated the role of the liver-the source of the iron regulatory hormone hepcidin-in pathogenesis in mice.

Methods: We exchanged livers between Hfe wild-type (+/+) and Hfe null (-/-) mice by orthotopic liver transplantation (OLT) and assessed histopathology, serum and tissue iron parameters, and hepatic hepcidin messenger RNA expression.

View Article and Find Full Text PDF

Background And Aims: Mutations in HFE are the most common cause of the iron-overload disorder hereditary hemochromatosis. Levels of the main iron regulatory hormone, hepcidin, are inappropriately low in hereditary hemochromatosis mouse models and patients with HFE mutations, indicating that HFE regulates hepcidin. The bone morphogenetic protein 6 (BMP6)-SMAD signaling pathway is an important endogenous regulator of hepcidin expression.

View Article and Find Full Text PDF

Background & Aims: Hepcidin is a peptide hormone that is central to the regulation of iron homeostasis. In response to interleukin 6 (IL-6), hepatocytes produce hepcidin that decreases iron release/transfer from enterocytes and macrophages and causes hypoferremia. To clarify the molecular pathways involved in hepcidin activation by IL-6, we used different mice strains in which the main IL-6/gp130 signaling pathways have been genetically disrupted.

View Article and Find Full Text PDF

Ferroportin-associated iron overload (also known as the ferroportin disease) is a common cause of hereditary hyperferritinemia. It was originally proposed that loss-of-protein function mutations account for iron overload in the FD. This hypothesis is consistent with the phenotype reported in most patients with FD of early iron accumulation in tissues, particularly in macrophages, in spite of relatively normal-low circulatory iron.

View Article and Find Full Text PDF

Hepcidin, the iron hormone, is produced by the liver in response to iron and inflammation. Its synthesis during inflammation is triggered by cytokines, but the details of iron activation are obscure. We tested the role of Kupffer cells and macrophages by studying iron-loaded or inflamed mice with selective inactivation of Kupffer cells or the in vitro effect of conditioned human macrophages on hepcidin expression.

View Article and Find Full Text PDF

Background And Aims: Juvenile hemochromatosis is a severe form of hereditary iron overload that has thus far been linked to pathogenic mutations of the gene coding for hemojuvelin (HJV), on chromosome 1, or, more rarely, that coding for hepcidin ( HAMP ), on chromosome 19. A milder adult-onset form is due to pathogenic mutations of HFE or, rarely, serum transferrin receptor 2.

Methods: We studied a pedigree with siblings affected by both juvenile and adult-onset hereditary hemochromatosis.

View Article and Find Full Text PDF

Classic hereditary hemochromatosis (HH) is a common genetic disorder of iron metabolism caused by a mutation in the HFE gene. Whereas the prevalence of the mutation is very high, the clinical penetrance of the disease is low, suggesting that the HFE mutation is a necessary but not sufficient cause of clinical HH. Several candidate modifier genes have been proposed in mice and humans, including haptoglobin.

View Article and Find Full Text PDF

The product of the SLC40A1 gene, ferroportin 1, is a main iron export protein. Pathogenic mutations in ferroportin 1 lead to an autosomal dominant hereditary iron overload syndrome characterized by high serum ferritin concentration, normal transferrin saturation, iron accumulation predominantly in macrophages, and marginal anemia. Iron overload occurs in both the African and the African-American populations, but a possible genetic basis has not been established.

View Article and Find Full Text PDF

Background/aims: MTP1/Ferroportin1/IREG1, the product of the SLC40A1 gene, is a main iron export protein in mammals. However, the way this gene is regulated by iron is still unclear. The aim of this study was to investigate the functional role of genomic SLC40A1 elements in response to iron.

View Article and Find Full Text PDF

Hepatic fibrosis due to iron overload is mediated by oxidant stress. The basic mechanisms underlying this process in vivo are still little understood. Acutely iron-dosed gerbils were assayed for lobular accumulation of hepatic lipid peroxidation by-products, oxidant-stress gene response, mitochondrial energy-dependent functions, and fibrogenesis.

View Article and Find Full Text PDF