Angew Chem Int Ed Engl
November 2024
The field of bioorthogonal chemistry has revolutionized our ability to interrogate and manipulate biological systems at the molecular level. However, the range of chemical reactions that can operate efficiently in biological environments without interfering with the native cellular machinery, remains limited. In this context, the rapidly growing area of photocatalysis offers a promising avenue for developing new type of bioorthogonal tools.
View Article and Find Full Text PDFPerforming abiotic synthetic transformations in live cell environments represents a new, promising approach to interrogate and manipulate biology and to uncover new types of biomedical tools. We now found that photocatalytic bond-forming reactions can be added to the toolbox of bioorthogonal synthetic chemistry. Specifically, we demonstrate that exogenous styryl aryl azides can be converted into indoles inside living mammalian cells under photocatalytic conditions.
View Article and Find Full Text PDF