This review covers the general aspects of the anatomy and physiology of the major body systems in digenetic trematodes, with an emphasis on new knowledge of the area acquired since the publication of the second edition of this book in 2019. In addition to reporting on key recent advances in the morphology and physiology of tegumentary, sensory, neuromuscular, digestive, excretory, and reproductive systems, and their roles in host-parasite interactions, this edition includes a section discussing the known and putative roles of bacteria in digenean biology and physiology. Furthermore, a brief discussion of current trends in the development of novel treatment and control strategies based on a better understanding of the trematode body systems and associated bacteria is provided.
View Article and Find Full Text PDFThe complex relationships between gastrointestinal (GI) nematodes and the host gut microbiota have been implicated in key aspects of helminth disease and infection outcomes. Nevertheless, the direct and indirect mechanisms governing these interactions are, thus far, largely unknown. In this proof-of-concept study, we demonstrate that the excretory-secretory products (ESPs) and extracellular vesicles (EVs) of key GI nematodes contain peptides that, when recombinantly expressed, exert antimicrobial activity in vitro against .
View Article and Find Full Text PDFOnchocerca lupi is a zoonotic filarioid parasite of dogs and cats with widespread distribution. A specific non-invasive diagnostic assay for the detection of O. lupi infections remains unavailable.
View Article and Find Full Text PDFFood Waterborne Parasitol
March 2024
is a zoonotic parasite able of infecting all warm-blooded animals. Toxoplasmosis is one of the major foodborne diseases globally. The consumption of wild boar () meat from recreational hunting has been linked to outbreaks of human toxoplasmosis.
View Article and Find Full Text PDFBackground: The microbiome is known to play key roles in health and disease, including host susceptibility to parasite infections. The freshwater snail Galba truncatula is the intermediate host for many trematode species, including the liver and rumen flukes Fasciola hepatica and Calicophoron daubneyi, respectively. The snail-parasite system has previously been investigated.
View Article and Find Full Text PDFWhile symbiotic relationships between invertebrates and bacteria have been extensively described, studies of microbial communities inhabiting parasitic worms remain scarce. Exploring the microbiota associated with helminths responsible for major infectious diseases will inform on parasite biology, host-pathogen interactions, and disease pathophysiology. We investigated the presence of microorganisms inhabiting tissues of the human parasite Schistosoma mansoni.
View Article and Find Full Text PDFThe pathophysiology of schistosomiasis is linked to the formation of fibrous granulomas around eggs that become trapped in host tissues, particularly the intestines and liver, during their migration to reach the lumen of the vertebrate gut. While the development of Schistosoma egg-induced granulomas is the result of finely regulated crosstalk between egg-secreted antigens and host immunity, evidence has started to emerge of the likely contribution of an additional player-the host gut microbiota-to pathological processes that culminate with the formation of these tissue lesions. Uncovering the role(s) of schistosome-mediated changes in gut microbiome composition and function in granuloma formation and, more broadly, in the pathophysiology of schistosomiasis, will shed light on the mechanisms underlying this three-way parasite-host-microbiome interplay.
View Article and Find Full Text PDFThe identification of gastrointestinal helminth infections of humans and livestock almost exclusively relies on the detection of eggs or larvae in faeces, followed by manual counting and morphological characterisation to differentiate species using microscopy-based techniques. However, molecular approaches based on the detection and quantification of parasite DNA are becoming more prevalent, increasing the sensitivity, specificity and throughput of diagnostic assays. High-throughput sequencing, from single PCR targets through to the analysis of whole genomes, offers significant promise towards providing information-rich data that may add value beyond traditional and conventional molecular approaches; however, thus far, its utility has not been fully explored to detect helminths in faecal samples.
View Article and Find Full Text PDFGender inequity in Science, Technology, Engineering, and Medicine (STEM) fields, including parasitology, continues to limit the participation of women in scientific leadership and development. Here we highlight the aims and activities of Herminthology, an initiative promoting the work of women in parasitology, alongside the current status quo of men and women scientists in the discipline.
View Article and Find Full Text PDFBackground: Cystic echinococcosis (CE) is a widespread zoonosis and a significant economic concern and cause of morbidity in humans. A scarcity of education on the sources of CE infection and containment measures is considered to be a key factor responsible for persistent transmission within communities. Recently, edutainment approaches have captured the attention of health education (HE) professionals due to the benefits of integrating cognitive and emotional learning processes.
View Article and Find Full Text PDFA plethora of studies, both experimental and epidemiological, have indicated the occurrence of associations between infections by gastrointestinal (GI) helminths and the composition and function of the host gut microbiota. Given the worldwide risk and spread of anthelmintic resistance, particularly for GI parasites of livestock, a better understanding of the mechanisms underpinning the relationships between GI helminths and the gut microbiome, and between the latter and host health, may assist the development of novel microbiome-targeting and other bacteria-based strategies for parasite control. In this article, we review current and prospective methods to manipulate the host gut microbiome, and/or to exploit the immune stimulatory and modulatory properties of gut bacteria (and their products) to counteract the negative impact of GI worm infections; we also discuss the potential applications of these intervention strategies in programmes aimed to aid the fight against helminth diseases of humans and livestock.
View Article and Find Full Text PDFIncreasing evidence shows that the host gut microbiota might be involved in the immunological cascade that culminates with the formation of tissue granulomas underlying the pathophysiology of hepato-intestinal schistosomiasis. In this study, we investigated the impact of Schistosoma mansoni infection on the gut microbial composition and functional potential of both wild type and microbiome-humanized mice. In spite of substantial differences in microbiome composition at baseline, selected pathways were consistently affected by parasite infection.
View Article and Find Full Text PDFBackground: Over the past decade, evidence has emerged of the ability of gastrointestinal (GI) helminth parasites to alter the composition of the host gut microbiome; however, the mechanism(s) underpinning such interactions remain unclear. In the current study, we (i) undertake proteomic analyses of the excretory-secretory products (ESPs), including secreted extracellular vesicles (EVs), of the 'brown stomach worm' Teladorsagia circumcincta, one of the major agents causing parasite gastroenteritis in temperate areas worldwide; (ii) conduct bioinformatic analyses to identify and characterise antimicrobial peptides (AMPs) with putative antimicrobial activity; and (iii) assess the bactericidal and/or bacteriostatic properties of T. circumcincta EVs, and whole and EV-depleted ESPs, using bacterial growth inhibition assays.
View Article and Find Full Text PDFInfections by gastrointestinal (GI) helminths have been associated with significant alterations of the structure of microbial communities inhabiting the host gut. However, current understanding of the biological mechanisms that regulate these relationships is still lacking. We propose that helminth-derived extracellular vesicles (EVs) likely represent key players in helminth-microbiota crosstalk.
View Article and Find Full Text PDFIn vitro models of the gut-microbiome axis are in high demand. Conventionally, intestinal monolayers grown on Transwell setups are used to test the effects of commensals/pathogens on the barrier integrity, both under homeostatic and pathophysiological conditions. While such models remain valuable for deepening the understanding of host-microbe interactions, often, they lack key biological components that mediate this intricate crosstalk.
View Article and Find Full Text PDFGastrointestinal (GI) helminth infections cause significant morbidity in both humans and animals worldwide. Specific and sensitive diagnosis is central to the surveillance of such infections and to determine the effectiveness of treatment strategies used to control them. In this article, we: (i) assess the strengths and limitations of existing methods applied to the diagnosis of GI helminth infections of humans and livestock; (ii) examine high-throughput sequencing approaches, such as targeted molecular barcoding and shotgun sequencing, as tools to define the taxonomic composition of helminth infections; and (iii) discuss the current understanding of the interactions between helminths and microbiota in the host gut.
View Article and Find Full Text PDFFront Cell Infect Microbiol
November 2021
Symbiont microbial communities play important roles in animal biology and are thus considered integral components of metazoan organisms, including parasitic worms (helminths). Nevertheless, the study of helminth microbiomes has thus far been largely overlooked, and symbiotic relationships between helminths and their microbiomes have been only investigated in selected parasitic worms. Over the past decade, advances in next-generation sequencing technologies, coupled with their increased affordability, have spurred investigations of helminth-associated microbial communities aiming at enhancing current understanding of their fundamental biology and physiology, as well as of host-microbe interactions.
View Article and Find Full Text PDFHelminth infections impact the composition of the mammalian gut microbiota; however, the mechanisms underpinning these interactions are, thus far, unknown. In this article, we propose that microbiota-derived extracellular vesicles might represent key players in host-helminth-microbiome crosstalk, and outline future directions to elucidate their role(s) in host-parasite relationships.
View Article and Find Full Text PDFBackground: Dogs are the main reservoir hosts of Leishmania infantum; nevertheless, recent investigations indicate a likely role for cats in the epidemiology of Leishmania infection. Feline leishmaniosis (FeL) remains poorly characterised, partly due to the lack of suitable diagnostic tools. This study aimed to compare serum amyloid A (SAA) levels and serum protein electrophoresis (SPE) profiles (specifically, alpha 2 and gamma globulins) in cats naturally exposed to or infected by L.
View Article and Find Full Text PDFBackground: Helminth-associated changes in gut microbiota composition have been hypothesised to contribute to the immune-suppressive properties of parasitic worms. Multiple sclerosis is an immune-mediated autoimmune disease of the central nervous system whose pathophysiology has been linked to imbalances in gut microbial communities.
Results: In the present study, we investigated, for the first time, qualitative and quantitative changes in the faecal bacterial composition of human volunteers with remitting multiple sclerosis (RMS) prior to and following experimental infection with the human hookworm, Necator americanus (N+), and following anthelmintic treatment, and compared the findings with data obtained from a cohort of RMS patients subjected to placebo treatment (PBO).
Background: Growing evidence points towards a role of gastrointestinal (GI) helminth parasites of ruminants in modifying the composition of the host gut flora, with likely repercussions on the pathophysiology of worm infection and disease, and on animal growth and productivity. However, a thorough understanding of the mechanisms governing helminth-microbiota interactions and of their impact on host health and welfare relies on reproducibility and replicability of findings. To this aim, in this study, we analysed quantitative and qualitative fluctuations in the faecal microbiota composition of lambs vaccinated against, and experimentally infected with, the parasitic GI nematode Teladorsagia circumcincta over the course of two separate trials performed over two consecutive years.
View Article and Find Full Text PDF