Publications by authors named "Cinzia Ambrosi"

Gap junctions are membrane specialization domains identified in most tissue types where cells abut each other. The connexin channels found in these membrane domains are conduits for direct cell-to-cell transfer of ions and molecules. Connexin43 (Cx43) is the most ubiquitous connexin, with critical roles in heart, skin, and brain.

View Article and Find Full Text PDF

Connexin proteins form hexameric assemblies known as hemichannels. When docked to form gap junction (GJ) channels, hemichannels play a critical role in cell-cell communication and cellular homeostasis, but often are functional entities on their own in unapposed cell membranes. Defects in the Connexin26 (Cx26) gene are the major cause of hereditary deafness arising from dysfunctional hemichannels in the cochlea.

View Article and Find Full Text PDF

Pannexin1 (Panx1) participates in several signaling events that involve adenosine triphosphate (ATP) release, including the innate immune response, ciliary beat in airway epithelia, and oxygen supply in the vasculature. The view that Panx1 forms a large ATP release channel has been challenged by the association of a low-conductance, small anion-selective channel with the presence of Panx1. We showed that Panx1 membrane channels can function in two distinct modes with different conductances and permeabilities when heterologously expressed in Xenopus oocytes.

View Article and Find Full Text PDF

Phosphorylation of gap junction proteins, connexins, plays a role in global signaling events involving kinases. Connexin43 (Cx43), a ubiquitous and important connexin, has several phosphorylation sites for specific kinases. We appended an imaging reporter tag for the activity of the δ isoform of protein kinase C (PKCδ) to the carboxyl terminus of Cx43.

View Article and Find Full Text PDF
Article Synopsis
  • Human mutations in the Connexin26 gene lead to non-syndromic hearing loss, making them the primary cause of childhood deafness globally.
  • The study analyzed fourteen specific point mutations in Connexin26, identifying eight that caused mis-trafficking of proteins and six that formed functional gap junctions but at reduced efficiency.
  • Tests showed that while some mutants could create gap junction channels when paired with wild-type proteins, none demonstrated significant changes in voltage sensitivity, and only specific mutations could form stable hemichannels when mixed with the normal protein.
View Article and Find Full Text PDF

Pannexin1 (Panx1) channels release cytosolic ATP in response to signaling pathways. Panx1 is highly expressed in the central nervous system. We used four antibodies with different Panx1 anti-peptide epitopes to analyze four regions of rat brain.

View Article and Find Full Text PDF

Fibrosis following myocardial infarction is associated with increases in arrhythmias and sudden cardiac death. Initial steps in the development of fibrosis are not clear; however, it is likely that cardiac fibroblasts play an important role. In immune cells, ATP release from pannexin 1 (Panx1) channels acts as a paracrine signal initiating activation of innate immunity.

View Article and Find Full Text PDF

Pannexins are homologous to innexins, the invertebrate gap junction family. However, mammalian pannexin1 does not form canonical gap junctions, instead forming hexameric oligomers in single plasma membranes and intracellularly. Pannexin1 acts as an ATP release channel, whereas less is known about the function of Pannexin2.

View Article and Find Full Text PDF

Connexin26 (Cx26) is a member of the connexin family, the building blocks for gap junction intercellular channels. These dodecameric assemblies are involved in gap junction-mediated cell-cell communication allowing the passage of ions and small molecules between two neighboring cells. Mutations in Cx26 lead to the disruption of gap junction-mediated intercellular communication with consequences such as hearing loss and skin disorders.

View Article and Find Full Text PDF

Pannexins are newly discovered channel proteins expressed in many different tissues and abundantly in the vertebrate central nervous system. Based on membrane topology, folding and secondary structure prediction, pannexins are proposed to form gap junction-like structures. We show here that Pannexin1 forms a hexameric channel and reaches the cell surface but, unlike connexins, is N-glycosylated.

View Article and Find Full Text PDF
Article Synopsis
  • HMGA1 is a transcription factor linked to cancer, particularly in neuroblastoma, where its expression is altered by MYCN, a gene often amplified in these tumors.
  • Treatment with retinoic acid lowers HMGA1 levels in neuroblastoma cells, but this repression is countered when MYCN is constantly expressed, suggesting MYCN supports HMGA1 expression.
  • Research findings indicate that MYCN can enhance HMGA1 expression through specific DNA interactions, and reducing HMGA1 levels slows down neuroblastoma cell growth, highlighting its potential role in cancer development.
View Article and Find Full Text PDF

Very soon after their original identification in HeLa cells in 1983, HMGA proteins appeared as interesting cancer-related molecules. Indeed, they were immediately noted as a sub-class of High Mobility Group proteins induced in fibroblast or epithelial cells transformed with sarcoma viruses. After more than 20 years, the association between HMGA protein expressions and cellular transformation has been largely confirmed and HMGA are among the most widely expressed cancer-associated proteins.

View Article and Find Full Text PDF