Publications by authors named "Cintia R Sargo"

Isomerases are enzymes that induce physical changes in a molecule without affecting the original molecular formula. Among this class of enzymes, xylose isomerases (XIs) are the most studied to date, partly due to their extensive application in industrial processes to produce high-fructose corn sirups. In recent years, the need for sustainable initiatives has triggered efforts to improve the biobased economy through the use of renewable raw materials.

View Article and Find Full Text PDF

Attainment of a stable and highly active β-xylosidase is of major importance for the efficient and cost-competitive hydrolysis of hemicellulose xylan, as well as for its industrial conversion into biofuels and biochemicals. Here, a recombinant β-xylosidase of the glycoside hydrolase family (GH43) from Bacillus subtilis was produced in Escherichia coli culture, purified, and subsequently immobilized on agarose and chitosan. Glutaraldehyde and glyoxyl groups were evaluated as activating agents to select the most efficient derivative.

View Article and Find Full Text PDF

The impact of cultivation strategy on the cost of recombinant protein production is crucial for defining cost-effective bioreactor operation conditions. This paper presents a methodology to estimate and compare cost impacts related to utilities as well as medium composition, using simple design equations and accessible data. Data from batch bioreactor cultures were used as case study involving the production of pneumococcal surface protein A, a soluble recombinant protein, employing BL21(DE3).

View Article and Find Full Text PDF

Background: Fine-tuning the aeration for cultivations when oxygen-limited conditions are demanded (such as the production of vaccines, isobutanol, 2-3 butanediol, acetone, and bioethanol) is still a challenge in the area of bioreactor automation and advanced control. In this work, an innovative control strategy based on metabolic fluxes was implemented and evaluated in a case study: micro-aerated ethanol fermentation.

Results: The experiments were carried out in fed-batch mode, using commercial Saccharomyces cerevisiae, defined medium, and glucose as carbon source.

View Article and Find Full Text PDF

In the last years, Salmonella has been extensively studied not only due to its importance as a pathogen, but also as a host to produce pharmaceutical compounds. However, the full exploitation of Salmonella as a platform for bioproduct delivery has been hampered by the lack of information about its metabolism. Genome-scale metabolic models can be valuable tools to delineate metabolic engineering strategies as long as they closely represent the actual metabolism of the target organism.

View Article and Find Full Text PDF

Streptococcus pneumoniae is the main cause of pneumonia, meningitis, and other conditions that kill thousands of children every year worldwide. The replacement of pneumococcal serotypes among the vaccinated population has evidenced the need for new vaccines with broader coverage and driven the research for protein-based vaccines. Pneumococcal surface protein A (PspA) protects S.

View Article and Find Full Text PDF

Live attenuated strains of Salmonella typhimurium have been extensively investigated as vaccines for a number of infectious diseases. However, there is still little information available concerning aspects of their metabolism. S.

View Article and Find Full Text PDF

Background: Penicillin G acylase (PGA) is used industrially to catalyze the hydrolysis of penicillin G to obtain 6-aminopenicillanic acid. In Escherichia coli, the most-studied microorganism for PGA production, this enzyme accumulates in the periplasmic cell space, and temperature plays an important role in the correct synthesis of its subunits.

Results: This work investigates the influence of medium composition, cultivation strategy, and temperature on PGA production by recombinant E.

View Article and Find Full Text PDF

In spite of the large number of reports on fed-batch cultivation of E. coli, alternative cultivation/induction strategies remain to be more deeply exploited. Among these strategies, it could be mentioned the use of complex media with combination of different carbon sources, novel induction procedures and feed flow rate control matching the actual cell growth rate.

View Article and Find Full Text PDF

This work reports the cloning, expression, and purification of a 42-kDa fragment of the SpaA protein from Erysipelothrix rhusiopathiae, the main antigenic candidate for a subunit vaccine against swine erysipelas. The use of an auto-induction protocol to improve heterologous protein expression in recombinant Escherichia coli cultures was also investigated. The cellular growth pattern and metabolite formation were evaluated under different induction conditions.

View Article and Find Full Text PDF

This work proposes an innovative methodology to control high density fed-batch cultures of E. coli, based on measurements of the concentration of dissolved oxygen and on estimations of the cellular specific growth rate (µ), of the yield of biomass/limiting substrate (Y (xs)) and of the maintenance coefficient (m). The underlying idea is to allow cells to grow according to their metabolic capacity, without the constraints inherent to pre-set growth rates.

View Article and Find Full Text PDF

One of the most important events in fed-batch fermentations is the definition of the moment to start the feeding. This paper presents a methodology for a rational selection of the architecture of an artificial intelligence (AI) system, based on a neural network committee (NNC), which identifies the end of the batch phase. The AI system was successfully used during high cell density cultivations of recombinant Escherichia coli.

View Article and Find Full Text PDF