Publications by authors named "Cintia E Paisio"

Growing industrialization and urbanization have led to increased water pollution due to the inadequate treatment and disposal of domestic wastewater (DW) and wastewater produced by industries such as tanneries (TW). These wastewaters are characterized by high concentrations of organic matter, nutrients, sulphates, chlorides and high microbial load. TW also contains phenols and chromium, which disturb and harm the ecosystem the local.

View Article and Find Full Text PDF

Tannery effluents with a high organic matter load (indicated by their COD level) have to be treated before they are discharged, so as to minimize their negative impact on the environment. Using field mesocosm systems, this study evaluated the feasibility of treating such effluents through bioaugmentation with activated sludge, followed by phytoremediation with aquatic macrophytes (Lemnoideae subfamily). Regardless of its quality, the activated sludge was able to remove approximately 77% of the COD from effluents with a low initial organic load (up to 1500 mg/L).

View Article and Find Full Text PDF

Lemna minuta Kunth was used to remove Cr(VI) from aqueous solutions, and some of the mechanisms involved in this process were analyzed. In addition, the cellular signaling mediated by phospholipase D activity as well as antioxidant responses was also evaluated during the process. Cr(VI) removal efficiencies were 40% for 0.

View Article and Find Full Text PDF

Industrial activities such as leather tanning involve the use of highly toxic inorganic pollutants, like Chromium (Cr). This work evaluated Cr(VI) remediation by hairy roots (HR) of Brassica napus, paying close attention to the mechanisms involved and the toxicity of post-removal solutions. Results showed that these roots were capable of tolerating concentrations of up to 10 mg L Cr(VI), while higher concentrations were toxic for HR development.

View Article and Find Full Text PDF

Phenol is one of the contaminants most frequently found in the environment and it is considered a priority pollutant due to their toxic effects. Hairy roots (HR) constitute a good model tool for the removal of this contaminant. In this work, phenol removal using wild type (WT) and double transgenic (DT) HR was performed with high efficiency (60-80%, for 25-250 mg L phenol solutions, respectively).

View Article and Find Full Text PDF

Tannery effluents require effective treatment prior to their final disposal, and the use of native bacterial consortia could be an appropriate strategy for this purpose. In the present work, consortium SFC 500-1 was found to be highly tolerant to different metals, metalloids and aromatic compounds like phenols. It was also able to remove the black dye commonly used in tanneries.

View Article and Find Full Text PDF

The presence of chromium in soils not only affects the physiological processes of plants but also the microbial rhizosphere composition and metabolic activities of microorganisms. Hence, the inoculation of plants with Cr(VI)-tolerant rhizospheric microorganisms as an alternative to reduce Cr phytotoxicity was studied. In this work, chickpea germination was reduced by Cr(VI) concentrations of 150 and 250 mg/L (6 and 33%, respectively); however lower Cr(VI) concentrations negatively affected the biomass.

View Article and Find Full Text PDF

The use of native bacteria is a useful strategy to decontaminate industrial effluents as well as the environment. Acinetobacter sp. RTE1.

View Article and Find Full Text PDF

A native bacterial strain with high capability for Cr (VI) removal was isolated from tannery sediments located in Elena (Córdoba Province, Argentina). The strain was characterized by amplification of 16S rRNA gene and identified as Serratia sp. C8.

View Article and Find Full Text PDF

The use of native bacteria is a useful strategy to decontaminate industrial effluents. In this work, two bacterial strains isolated from polluted environments constitutes a promising alternative since they were able to remove several phenolic compounds not only from synthetic solutions but also from effluents derived from a chemical industry and a tannery which are complex matrices. Acinetobacter sp.

View Article and Find Full Text PDF

The use of native microorganisms is a useful strategy for phenol bioremediation. In the present work, a bacterial strain, named RTE1.4, was isolated from effluents of a chemical industry.

View Article and Find Full Text PDF

Phenolic compounds are contaminants frequently found in water and soils. In the last years, some technologies such as phytoremediation have emerged to remediate contaminated sites. Plants alone are unable to completely degrade some pollutants; therefore, their association with rhizospheric bacteria has been proposed to increase phytoremediation potential, an approach called rhizoremediation.

View Article and Find Full Text PDF

Introduction: Wastewater derived from leather production may contain phenols, which are highly toxic, and their degradation could be possible through bioremediation technologies.

Materials, Methods And Results: In the present work, microbial degradation of phenol was studied using a tolerant bacterial strain, named CS1, isolated from tannery sediments. This strain was able to survive in the presence of phenol at concentrations of up to 1,000 mg/L.

View Article and Find Full Text PDF

Introduction: Transgenic plant strategies based on peroxidase expression or overexpression would be useful for phenolic compound removal since these enzymes play an important role in phenolic polymerizing reactions.

Material And Methods: Thus, double transgenic (DT) plants for basic peroxidases were obtained and characterized in order to compare the tolerance and efficiency for 2,4-dichlorophenol (2,4-DCP) removal with WT and simple transgenic plants expressing TPX1 or TPX2 gene. Several DT plants showed the expression of both transgenes and proteins, as well as increased peroxidase activity.

View Article and Find Full Text PDF

Introduction: Meristematic mitotic cells of Allium cepa constitute an adequate material for cytotoxicity and genotoxicity evaluation of environmental pollutants, such as phenol, which is a contaminant frequently found in several industrial effluents.

Results And Discussion: In the present work, Brassica napus hairy roots (HR) were used for phenol removal assays. The toxicity of post-removal solutions (PRS) and phenol solutions was analyzed.

View Article and Find Full Text PDF

Phenol and their derivatives are used in several industries and they have a high potential toxicity for animal and plant species. They were found in variable concentrations, as high as 1000 mg/L, in industrial wastewater and, they are often discharged into the environment. Amphibian embryos are useful indicators of environmental pollution.

View Article and Find Full Text PDF