Publications by authors named "Cintia E Citterio"

Thyroglobulin must pass endoplasmic reticulum (ER) quality control to become secreted for thyroid hormone synthesis. Defective thyroglobulin, blocked in trafficking, can cause hypothyroidism. Thyroglobulin is a large protein (~2750 residues) spanning regions I-II-III plus a C-terminal cholinesterase-like domain.

View Article and Find Full Text PDF

Congenital iodide transport defect is an uncommon autosomal recessive disorder caused by loss-of-function variants in the sodium iodide symporter (NIS)-coding SLC5A5 gene and leading to dyshormonogenic congenital hypothyroidism. Here, we conducted a targeted next-generation sequencing assessment of congenital hypothyroidism-causative genes in a cohort of nine unrelated pediatric patients suspected of having a congenital iodide transport defect based on the absence of 99mTc-pertechnetate accumulation in a eutopic thyroid gland. Although, unexpectedly, we could not detect pathogenic SLC5A5 gene variants, we identified two novel compound heterozygous TG gene variants (p.

View Article and Find Full Text PDF

Complete absence of thyroid hormone is incompatible with life in vertebrates. Thyroxine is synthesized within thyroid follicles upon iodination of thyroglobulin conveyed from the endoplasmic reticulum (ER), via the Golgi complex, to the extracellular follicular lumen. In congenital hypothyroidism from biallelic thyroglobulin mutation, thyroglobulin is misfolded and cannot advance from the ER, eliminating its secretion and triggering ER stress.

View Article and Find Full Text PDF

Thyroglobulin (TG) plays a main role in the biosynthesis of thyroid hormones (TH), and, thus, it is involved in a wide range of vital functions throughout the life cycle of all vertebrates. Deficiency of TH production due to TG genetic variants causes congenital hypothyroidism (CH), with devastating consequences such as intellectual disability and impaired growth if untreated. To this day, 229 variations in the human TG gene have been identified while the 3D structure of TG has recently appeared.

View Article and Find Full Text PDF

Thyroid stimulating hormone (TSH) is critical for normal development and metabolism. To better understand the genetic contribution to TSH levels, we conduct a GWAS meta-analysis at 22.4 million genetic markers in up to 119,715 individuals and identify 74 genome-wide significant loci for TSH, of which 28 are previously unreported.

View Article and Find Full Text PDF

Thyroglobulin (TG), a large glycosylated protein secreted by thyrocytes into the thyroid follicular lumen, plays an essential role in thyroid hormone biosynthesis. Rattus norvegicus TG (rTG) is encoded by a large single copy gene, 186-kb long, located on chromosome 7 composed of 48 exons encoding a 8461-kb mRNA. Although the TG gene displays sequence variability, many missense mutations do not impose any adverse effect on the TG protein, whereas other nucleotide substitutions may affect its TG stability and/or TG intracellular trafficking.

View Article and Find Full Text PDF
Article Synopsis
  • The thyroid hormones T3 and T4 are made in the thyroid gland using the iodoglycoprotein thyroglobulin, which has a similar structure across all vertebrates.
  • Upon delivery to the follicular lumen, specific tyrosine residues on thyroglobulin get iodinated to eventually form T3 and T4, with T3 synthesis involving a combination of di-iodotyrosine.
  • Thyroid hormone production is regulated by TSH, which enhances the activity of genes responsible for hormone synthesis and adjusts the form of thyroglobulin in conditions like iodide deficiency and Graves disease; mutations in the thyroglobulin gene can lead to congenital hypothyroidism.
View Article and Find Full Text PDF

Thyroglobulin (TG) is the most abundant thyroid gland protein, a dimeric iodoglycoprotein (660 kDa). TG serves as the protein precursor in the synthesis of thyroid hormones tetraiodothyronine (T) and triiodothyronine (T). The primary site for T synthesis in TG involves an iodotyrosine acceptor at the antepenultimate Tyr residue (at the extreme carboxyl terminus of the protein).

View Article and Find Full Text PDF

Thyroid dyshormonogenesis due to thyroglobulin (TG) gene mutations have an estimated incidence of approximately 1 in 100,000 newborns. The clinical spectrum ranges from euthyroid to mild or severe hypothyroidism. Up to now, one hundred seventeen deleterious mutations in the TG gene have been identified and characterized.

View Article and Find Full Text PDF

The thyroid gland secretes primarily tetraiodothyronine (T), and some triiodothyronine (T). Under normal physiological circumstances, only one-fifth of circulating T is directly released by the thyroid, but in states of hyperactivation of thyroid-stimulating hormone receptors (TSHRs), patients develop a syndrome of relative T toxicosis. Thyroidal T production results from iodination of thyroglobulin (TG) at residues Tyr and Tyr, whereas thyroidal T production may originate in several different ways.

View Article and Find Full Text PDF

Iodide Handling Disorders lead to defects of the biosynthesis of thyroid hormones (thyroid dyshormonogenesis, TD) and thereafter congenital hypothyroidism (CH), the most common endocrine disease characterized by low levels of circulating thyroid hormones. The prevalence of CH is 1 in 2000-3000 live births. Prevention of CH is based on prenatal diagnosis, carrier identification, and genetic counseling.

View Article and Find Full Text PDF

Iodide Organification defects (IOD) represent 10% of cases of congenital hypothyroidism (CH) being the main genes affected that of TPO (thyroid peroxidase) and DUOX2 (dual oxidasa 2). From a patient with clinical and biochemical criteria suggestive with CH associated with IOD, TPO and DUOX2 genes were analyzed by means of PCR-Single Strand Conformation Polymorphism analysis and sequencing. A novel heterozygous compound to the mutations c.

View Article and Find Full Text PDF

Several patients were identified with dyshormonogenesis caused by mutations in the thyroglobulin (TG) gene. These defects are inherited in an autosomal recessive manner and affected individuals are either homozygous or compound heterozygous for the mutations. The aim of the present study was to identify new TG mutations in a patient of Vietnamese origin affected by congenital hypothyroidism, goiter and low levels of serum TG.

View Article and Find Full Text PDF

Background: Human thyroperoxidase (hTPO) is a membrane-bound glycoprotein located at the apical membrane of the thyroid follicular cells which catalyzes iodide oxidation and organification in the thyroglobulin (TG) tyrosine residues, leading to the thyroid hormone synthesis by coupling of iodotyrosine residues. Mutations in hTPO gene are the main cause of iodine organification defects (IOD) in infants.

Methods: We investigated the functional impact of hTPO gene missense mutations previously identified in our laboratory (p.

View Article and Find Full Text PDF

The objective of this study was to perform genetic analysis in three brothers of Turkish origin born from consanguineus parents and affected by congenital hypothyroidism, goiter and low levels of serum TG. The combination of sequencing of DNA, PCR mapping, quantitative real-time PCR, inverse-PCR (I-PCR), multiplex PCR and bioinformatics analysis were used in order to detect TG mutations. We demonstrated that the three affected siblings are homozygous for a DNA inversion of 16,962bp in the TG gene associated with two deleted regions at both sides of the inversion limits.

View Article and Find Full Text PDF

The thyroglobulin (TG) gene is organized in 48 exons, spanning over 270 kb on human chromosome 8q24. Up to now, 62 inactivating mutations in the TG gene have been identified in patients with congenital goiter and endemic or non-endemic simple goiter. The purpose of the present study was to identify and characterize new mutations in the TG gene.

View Article and Find Full Text PDF

Thyroglobulin (TG) is a homodimeric glycoprotein synthesized by the thyroid gland. To date, 52 mutations of the TG gene have been identified in humans. The purpose of the present study was to identify and characterize new mutations in the TG gene.

View Article and Find Full Text PDF

Human thyroglobulin (TG) gene is a single copy gene, 270 kb long, that maps on chromosome 8q24.2-8q24.3 and contains an 8.

View Article and Find Full Text PDF