Publications by authors named "Cintia Castilho"

Thermal exfoliation is an efficient and scalable method for the production of graphene nanosheets or nanoplatelets, which are typically re-assembled or blended to form new macroscopic "graphene-based materials". Thermal exfoliation can be applied to these macroscopic graphene-based materials after casting to create internal porosity, but this process variant has not been widely studied, and can easily lead to destruction of the physical form of the original cast body. Here we explore how the partial thermal exfoliation of graphene oxide (GO) multilayer nanosheet films can be used to control pore structure and electrical conductivity of planar, textured, and confined GO films.

View Article and Find Full Text PDF

Liquid-phase deposition of exfoliated 2D nanosheets is the basis for emerging technologies that include writable electronic inks, molecular barriers, selective membranes, and protective coatings against fouling or corrosion. These nanosheet thin films have complex internal structures that are discontinuous assemblies of irregularly tiled micron-scale sheets held together by van der Waals (vdW) forces. On stiff substrates, nanosheet vdW films are stable to many common stresses, but can fail by internal delamination under shear stress associated with handling or abrasion.

View Article and Find Full Text PDF

With increasing commercialization of high volume, two-dimensional carbon nanomaterials comes a greater likelihood of environmental release. In aquatic environments, black carbon binds contaminants like aromatic hydrocarbons, leading to changes in their uptake, bioavailability, and toxicity. Engineered carbon nanomaterials can also adsorb pollutants onto their carbon surfaces, and nanomaterial physicochemical properties can influence this contaminant interaction.

View Article and Find Full Text PDF

Graphene-based materials are being developed for a variety of wearable technologies to provide advanced functions that include sensing; temperature regulation; chemical, mechanical, or radiative protection; or energy storage. We hypothesized that graphene films may also offer an additional unanticipated function: mosquito bite protection for light, fiber-based fabrics. Here, we investigate the fundamental interactions between graphene-based films and the globally important mosquito species, , through a combination of live mosquito experiments, needle penetration force measurements, and mathematical modeling of mechanical puncture phenomena.

View Article and Find Full Text PDF