Background: Some studies have suggested that mitochondrial dysfunction and a superoxide imbalance could increase susceptibility to chronic stressful events, contributing to the establishment of chronic inflammation and the development of mood disorders. The mitochondrial superoxide imbalance induced by some molecules, such as rotenone, could be evolutionarily conserved, causing behavioral, immune, and neurological alterations in animals with a primitive central nervous system.
Objective: Behavioral, immune, and histological markers were analyzed in Eisenia fetida earthworms chronically exposed to rotenone for 14 days.
The effects of Toxoplasma gondii during embryonic development have not been explored despite the predilection of this parasite for neurons and glial cells. Here, we investigated the activation of the purinergic system and proinflammatory responses during congenital infection by T. gondii.
View Article and Find Full Text PDFThe intracellular protozoan Toxoplasma gondii may cause congenital toxoplasmosis and serious brain damage in fetus. However, the underlying mechanism of neuropathogenesis in brain toxoplasmosis remains unclear. For this study, neural progenitor cells (NPCs) were obtained from embryo telencephalons (embryonic day 13) and induced to proliferation in the presence of growth factors (GFs).
View Article and Find Full Text PDF