Int J Neural Syst
November 2024
This study presents a Subject-Aware Transformer-based neural network designed for the Electroencephalogram (EEG) Emotion Recognition task (SATEER), which entails the analysis of EEG signals to classify and interpret human emotional states. SATEER processes the EEG waveforms by transforming them into Mel spectrograms, which can be seen as particular cases of images with the number of channels equal to the number of electrodes used during the recording process; this type of data can thus be processed using a Computer Vision pipeline. Distinct from preceding approaches, this model addresses the variability in individual responses to identical stimuli by incorporating a User Embedder module.
View Article and Find Full Text PDFProtein biogenesis within the endoplasmic reticulum (ER) is crucial for organismal function. Errors during protein folding necessitate the removal of faulty products. ER-associated protein degradation and ER-phagy target misfolded proteins for proteasomal and lysosomal degradation.
View Article and Find Full Text PDFEmotion recognition plays an essential role in human-human interaction since it is a key to understanding the emotional states and reactions of human beings when they are subject to events and engagements in everyday life. Moving towards human-computer interaction, the study of emotions becomes fundamental because it is at the basis of the design of advanced systems to support a broad spectrum of application areas, including forensic, rehabilitative, educational, and many others. An effective method for discriminating emotions is based on ElectroEncephaloGraphy (EEG) data analysis, which is used as input for classification systems.
View Article and Find Full Text PDFBackground: aortic stenosis is a common heart valve disease that mainly affects older people in developed countries. Its early detection is crucial to prevent the irreversible disease progression and, eventually, death. A typical screening technique to detect stenosis uses echocardiograms; however, variations introduced by other tissues, camera movements, and uneven lighting can hamper the visual inspection, leading to misdiagnosis.
View Article and Find Full Text PDFIntroduction: Hypophosphatasia (HPP) is a rare genetic disease caused by inactivating variants of the ALPL gene. Few data are available on the clinical presentation in Italy and/or on Italian HPP surveys.
Methods: There were 30 suspected HPP patients recruited from different Italian tertiary cares.
Birt-Hogg-Dubé (BHD) syndrome is an inherited familial cancer syndrome characterized by the development of cutaneous lesions, pulmonary cysts, renal tumors and cysts and caused by loss-of-function pathogenic variants in the gene encoding the tumor-suppressor protein folliculin (FLCN). FLCN acts as a negative regulator of TFEB and TFE3 transcription factors, master controllers of lysosomal biogenesis and autophagy, by enabling their phosphorylation by the mechanistic Target Of Rapamycin Complex 1 (mTORC1). We have previously shown that deletion of Tfeb rescued the renal cystic phenotype of kidney-specific Flcn KO mice.
View Article and Find Full Text PDFDuring flight, unmanned aerial vehicles (UAVs) need several sensors to follow a predefined path and reach a specific destination. To this aim, they generally exploit an inertial measurement unit (IMU) for pose estimation. Usually, in the UAV context, an IMU entails a three-axis accelerometer and a three-axis gyroscope.
View Article and Find Full Text PDFSelective degradation of the endoplasmic reticulum (ER) via autophagy (ER-phagy) is initiated by ER-phagy receptors, which facilitate the incorporation of ER fragments into autophagosomes. FAM134 reticulon family proteins (FAM134A, FAM134B, and FAM134C) are ER-phagy receptors with structural similarities and nonredundant functions. Whether they respond differentially to the stimulation of ER-phagy is unknown.
View Article and Find Full Text PDFHuman feelings expressed through verbal (e.g. voice) and non-verbal communication channels (e.
View Article and Find Full Text PDFImproving existing neural network architectures can involve several design choices such as manipulating the loss functions, employing a diverse learning strategy, exploiting gradient evolution at training time, optimizing the network hyper-parameters, or increasing the architecture depth. The latter approach is a straightforward solution, since it directly enhances the representation capabilities of a network; however, the increased depth generally incurs in the well-known vanishing gradient problem. In this paper, borrowing from different methods addressing this issue, we introduce an interlaced multi-task learning strategy, defined SIRe, to reduce the vanishing gradient in relation to the object classification task.
View Article and Find Full Text PDFComput Methods Programs Biomed
June 2022
Background: over the last year, the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and its variants have highlighted the importance of screening tools with high diagnostic accuracy for new illnesses such as COVID-19. In that regard, deep learning approaches have proven as effective solutions for pneumonia classification, especially when considering chest-x-rays images. However, this lung infection can also be caused by other viral, bacterial or fungi pathogens.
View Article and Find Full Text PDFThe increasing availability of wireless access points (APs) is leading toward human sensing applications based on Wi-Fi signals as support or alternative tools to the widespread visual sensors, where the signals enable to address well-known vision-related problems such as illumination changes or occlusions. Indeed, using image synthesis techniques to translate radio frequencies to the visible spectrum can become essential to obtain otherwise unavailable visual data. This domain-to-domain translation is feasible because both objects and people affect electromagnetic waves, causing radio and optical frequencies variations.
View Article and Find Full Text PDF(1) Background: Classic Ehlers-Danlos syndrome (cEDS) is a heritable connective tissue disorder characterized by joint hypermobility and skin hyperextensibility with atrophic scarring. Many cEDS individuals carry variants in either the or genes. Mosaicism is relatively common in heritable connective tissue disorders but is rare in EDS.
View Article and Find Full Text PDFUnlabelled: Inspired by the Conservation of Resource theory (Hobfoll, 1989), this study investigated the role of a broad set of personal vulnerabilities, social, and work-related stressors and resources as predictors of workers' well-being during the COVID-19 outbreak. Participants were 594 workers in Italy. Results showed that personality predispostions, such as positivity, neuroticism and conscientiousness as well as key aspects of the individuals' relationship with their work (such as job insecurity, type of employment contract or trust in the organization) emerged as factors promoting (or hampering) workers' adjustment during the COVID -19 outbreak.
View Article and Find Full Text PDFBackground And Objectives: Electroencephalography (EEG) measures the electrical brain activity in real-time by using sensors placed on the scalp. Artifacts due to eye movements and blinking, muscular/cardiac activity and generic electrical disturbances, have to be recognized and eliminated to allow a correct interpretation of the Useful Brain Signals (UBS). Independent Component Analysis (ICA) is effective to split the signal into Independent Components (IC) whose re-projection on 2D topographies of the scalp (images also called Topoplots) allows to recognize/separate artifacts and UBS.
View Article and Find Full Text PDF. Autoimmune polyglandular syndrome type 1 (APS-1) with or without reversible metaphyseal dysplasia is a rare genetic disorder due to inactivating variants of the autoimmune regulator, gene. Clinical variability of APS-1 relates to pleiotropy, and the general dysfunction of self-tolerance to organ-specific antigens and autoimmune reactions towards peripheral tissues caused by the underlying molecular defect.
View Article and Find Full Text PDFInt J Neural Syst
February 2021
Deception detection is a relevant ability in high stakes situations such as police interrogatories or court trials, where the outcome is highly influenced by the interviewed person behavior. With the use of specific devices, e.g.
View Article and Find Full Text PDFComputer Tomography (CT) imaging of the chest is a valid diagnosis tool to detect COVID-19 promptly and to control the spread of the disease. In this work we propose a light Convolutional Neural Network (CNN) design, based on the model of the SqueezeNet, for the efficient discrimination of COVID-19 CT images with respect to other community-acquired pneumonia and/or healthy CT images. The architecture allows to an accuracy of 85.
View Article and Find Full Text PDFPerson re-identification is concerned with matching people across disjointed camera views at different places and different time instants. This task results of great interest in computer vision, especially in video surveillance applications where the re-identification and tracking of persons are required on uncontrolled crowded spaces and after long time periods. The latter aspects are responsible for most of the current unsolved problems of person re-identification, in fact, the presence of many people in a location as well as the passing of hours or days give arise to important visual appearance changes of people, for example, clothes, lighting, and occlusions; thus making person re-identification a very hard task.
View Article and Find Full Text PDFLysosomal degradation of the endoplasmic reticulum (ER) via autophagy (ER-phagy) is emerging as a critical regulator of cell homeostasis and function. The recent identification of ER-phagy receptors has shed light on the molecular mechanisms underlining this process. However, the signaling pathways regulating ER-phagy in response to cellular needs are still largely unknown.
View Article and Find Full Text PDFNo data on interstitial microduplications of the 16q24.2q24.3 chromosome region are available in the medical literature and remain extraordinarily rare in public databases.
View Article and Find Full Text PDF