Publications by authors named "Cingolani R"

Over the last few years it has been understood that the interface between living cells and the underlying materials can be a powerful tool to manipulate cell functions. In this study, we explore the hypothesis that the electrical cell/material interface can regulate the differentiation of cancer stem-like cells (CSCs). Electrospun polymer fibres, either polyamide 66 or poly(lactic acid), with embedded graphene nanoplatelets (GnPs), have been fabricated as CSC scaffolds, providing both the 3D microenvironment and a suitable electrical environment favorable for CSCs adhesion, growth and differentiation.

View Article and Find Full Text PDF

This paper derives from a document commissioned in 2019 by the Italian Minister of Health, and outlines a general strategy for primary prevention of non-communicable diseases in Italy, with a special focus on cobenefits of climate change mitigation. Given that action against climate change is primarily taken via energy choices, limiting the use of fossil fuels and promoting renewable sources, an effective strategy is one in which interventions are designed to prevent diseases and jointly mitigate climate change, the so-called cobenefits. For policies capable of producing relevant co-benefits we focus on three categories of interventions, urban planning, diet and transport that are of special importance.

View Article and Find Full Text PDF
Article Synopsis
  • A scalable process was developed to create PEEK filaments reinforced with graphene nanoplatelets (GnPs), resulting in improved mechanical and thermal properties.
  • The addition of 1.0 wt.% GnP significantly increased storage modulus (61%), tensile strength (34%), Young's modulus (25%), and elongation at break (37%), while enhancing the thermal stability of the PEEK matrix.
  • However, adding more than 1.0 wt.% GnP can lead to agglomeration, which negatively affects the material's crystallinity and mechanical performance, but the resulting nanocomposites have potential applications in aerospace, automotive, robotics, and biomedical fields.
View Article and Find Full Text PDF

The replacement of plastic with eco-friendly and biodegradable materials is one of the most stringent environmental challenges. In this respect, cellulose stands out as a biodegradable polymer. However, a significant challenge is to obtain biodegradable materials for high-end photonics that are robust in humid environments.

View Article and Find Full Text PDF

The use of magnetic nanoparticles in oncothermia has been investigated for decades, but an effective combination of magnetic nanoparticles and localized chemotherapy under clinical magnetic hyperthermia (MH) conditions calls for novel platforms. In this study, we have engineered magnetic thermoresponsive iron oxide nanocubes (TR-cubes) to merge MH treatment with heat-mediated drug delivery, having in mind the clinical translation of the nanoplatform. We have chosen iron oxide based nanoparticles with a cubic shape because of their outstanding heat performance under MH clinical conditions, which makes them benchmark agents for MH.

View Article and Find Full Text PDF

Cation exchange (CE) reactions have emerged as a technologically important route, complementary to the colloidal synthesis, to produce nanostructures of different geometries and compositions for a variety of applications. Here it is demonstrated with first-principles simulations that an interstitial impurity cation in CdSe nanocrystals weakens nearby bonds and reduces the CE barrier in the prototypical exchange of Cd ions by Ag ions. A Wannier function-based tight binding model is employed to quantify microscopic mechanisms that influence this behavior.

View Article and Find Full Text PDF

The observation and control of interweaving spin, charge, orbital, and structural degrees of freedom in materials on ultrafast time scales reveal exotic quantum phenomena and enable new active forms of nanotechnology. Bonding is the prime example of the relation between electronic and nuclear degrees of freedom. We report direct evidence illustrating that photoexcitation can be used for ultrafast control of the breaking and recovery of bonds in solids on unprecedented time scales, near the limit for nuclear motions.

View Article and Find Full Text PDF

Cutin is the main component of plant cuticles constituting the framework that supports the rest of the cuticle components. This biopolymer is composed of esterified bi- and trifunctional fatty acids. Despite its ubiquity in terrestrial plants, it has been underutilized as raw material due to its insolubility and lack of melting point.

View Article and Find Full Text PDF

The synthesis of microcrystalline cellulose (MCC) and 9,10,16-hydroxyhexadecanoic (aleuritic) acid ester-based bioplastics was investigated through acylation in a mixed anhydride (trifluoroacetic acid (TFA)/trifluoroacetic acid anhydride (TFAA)), chloroform co-solvent system. The effects of chemical interactions and the molar ratio of aleuritic acid to the anhydroglucose unit (AGU) of cellulose were investigated. The degree of substitution (DS) of new polymers were characterized by two-dimensional solution-state NMR and ranged from 0.

View Article and Find Full Text PDF

Nanoparticles (NPs) are increasingly used in biomedical applications, but the factors that influence their interactions with living cells need to be elucidated. Here, we reveal the role of NP surface charge in determining their neuronal interactions and electrical responses. We discovered that negatively charged NPs administered at low concentration (10 nM) interact with the neuronal membrane and at the synaptic cleft, whereas positively and neutrally charged NPs never localize on neurons.

View Article and Find Full Text PDF
Article Synopsis
  • Robotics can greatly improve healthcare by enhancing surgical procedures, leading to shorter hospital stays and better recovery for patients.
  • Microsurgery benefits the most from robotic technology due to its need for extreme precision, and is becoming increasingly important across various surgical specialties.
  • Although there are challenges in technology and interface design to overcome, ongoing research is showing promising results for robotic microsurgery in areas like reconstructive surgery and ophthalmology.
View Article and Find Full Text PDF

A workshop of experts from France, Germany, Italy, and the United States took place at Humanitas Research Hospital Milan, Italy, on February 10 and 11, 2016, to examine techniques for and applications of robotic surgery to thoracic oncology. The main topics of presentation and discussion were robotic surgery for lung resection; robot-assisted thymectomy; minimally invasive surgery for esophageal cancer; new developments in computer-assisted surgery and medical applications of robots; the challenge of costs; and future clinical research in robotic thoracic surgery. The following article summarizes the main contributions to the workshop.

View Article and Find Full Text PDF

Highly enhanced solid-state thermochromism is observed in regioregular poly(3-hexylthiophene), P3HT, when deposited on a superhydrophobic polymer-SiO2 nanocomposite coating. The conformal P3HT coating on the nanocomposite surface does not alter or reduce superhydrophicity while maintaining its reversible enhanced thermochromism. The polymeric matrix of the superhydrophobic surface is comprised of a blend of poly(vinylidene fluoride-co-hexafluoropropylene) copolymer and an acrylic adhesive.

View Article and Find Full Text PDF

Here, we show the production of nanofibrous mats with controlled mechanical properties and excellent biocompatibility by combining fibroin with pure cellulose and cellulose-rich parsley powder agro-waste. To this end, trifluoroacetic acid was used as a common solvent for all of the involved biomaterials, achieving highly homogeneous blends that were suitable for the electrospinning technique. Morphological analysis revealed that the electrospun composite nanofibers were well-defined and defect-free, with a diameter in the range of 65-100 nm.

View Article and Find Full Text PDF

Nanoparticles, named cutinsomes, have been prepared from aleuritic (9,10,16-trihidroxipalmitic) acid and tomato fruit cutin monomers (a mixture of mainly 9(10),16-dihydroxypalmitic acid (85%, w/w) and 16-hydroxyhexadecanoic acid (7.5%, w/w)) with pectin in aqueous solution. The process of formation of the nanoparticles of aleuritic acid plus pectin has been monitored by UV-Vis spectrophotometry, while their chemical and morphological characterization was analyzed by ATR-FTIR, TEM, and non-contact AFM.

View Article and Find Full Text PDF

Solution-processed inorganic and organic materials have been pursued for more than a decade as low-threshold, high-gain lasing media, motivated in large part by their tunable optoelectronic properties and ease of synthesis and processing. Although both have demonstrated stimulated emission and lasing, they have not yet approached the continuous-wave pumping regime. Two-dimensional CdSe colloidal nanosheets combine the advantage of solution synthesis with the optoelectronic properties of epitaxial two-dimensional quantum wells.

View Article and Find Full Text PDF

We report an advanced lithium-ion battery based on a graphene ink anode and a lithium iron phosphate cathode. By carefully balancing the cell composition and suppressing the initial irreversible capacity of the anode in the round of few cycles, we demonstrate an optimal battery performance in terms of specific capacity, that is, 165 mAhg(-1), of an estimated energy density of about 190 Wh kg(-1) and a stable operation for over 80 charge-discharge cycles. The components of the battery are low cost and potentially scalable.

View Article and Find Full Text PDF

The cuticle is one of the most important plant barriers. It is an external and continuous lipid membrane that covers the surface of epidermal cells and whose main function is to prevent the massive loss of water. The spectroscopic characterization of the plant cuticle and its components (cutin, cutan, waxes, polysaccharides and phenolics) by infrared and Raman spectroscopies has provided significant advances in the knowledge of the functional groups present in the cuticular matrix and on their structural role, interaction and macromolecular arrangement.

View Article and Find Full Text PDF

The assessment of the risks exerted by nanoparticles is a key challenge for academic, industrial, and regulatory communities worldwide. Experimental evidence points towards significant toxicity for a range of nanoparticles both in vitro and in vivo. Worldwide efforts aim at uncovering the underlying mechanisms for this toxicity.

View Article and Find Full Text PDF

Technologies that are able to handle microvolumes of liquids, such as microfluidics and liquid marbles, are attractive for applications that include miniaturized biological and chemical reactors, sensors, microactuators, and drug delivery systems. Inspired from natural fibrous envelopes, here, we present an innovative approach for liquid encapsulation and manipulation using electrospun nanofibers. We demonstrated the realization of non-wetting soft solids consisting of a liquid core wrapped in a hydrophobic fibrillar cloak of a fluoroacrylic copolymer and cellulose acetate.

View Article and Find Full Text PDF

We have studied in vitro toxicity of iron oxide nanoparticles (NPs) coated with a thin silica shell (Fe3O4/SiO2 NPs) on A549 and HeLa cells. We compared bare and surface passivated Fe3O4/SiO2 NPs to evaluate the effects of the coating on the particle stability and toxicity. NPs cytotoxicity was investigated by cell viability, membrane integrity, mitochondrial membrane potential (MMP), reactive oxygen species (ROS) assays, and their genotoxicity by comet assay.

View Article and Find Full Text PDF

We present a method to create, align, and locate magnetic wires throughout and on the surface of patterned polymer matrices, following the magnetophoretic transport and self-assembly of ferromagnetic nanoparticles under a static magnetic field during laser photopolymerization of monomer/nanoparticle casted solutions. The resulting films have the ability to attract and immobilize small quantities of magnetic nanomaterials locally on the ferromagnetic wires, as proved by a detailed topography study. Magnetic studies on the films before and after the spontaneous deposition, demonstrate that the deposited nanomaterials alter significantly the magnetic character of the system, making thus possible their macroscopic identification.

View Article and Find Full Text PDF

Point mutations in the Kirsten rat sarcoma viral oncogene homologue (KRAS) gene are being increasingly recognized as important diagnostic and prognostic markers in cancer. In this work, we describe a rapid and low-cost method for the naked-eye detection of cancer-related point mutations in KRAS based on gold nanoparticles. This simple colorimetric assay is sensitive (limit of detection in the low picomolar range), instrument-free, and employs nonstringent room temperature conditions due to a combination of DNA-conjugated gold nanoparticles, a probe design which exploits cooperative hybridization for increased binding affinity, and signal enhancement on the surface of magnetic beads.

View Article and Find Full Text PDF

Local heating can be produced by iron oxide nanoparticles (IONPs) when exposed to an alternating magnetic field (AMF). To measure the temperature profile at the nanoparticle surface with a subnanometer resolution, here we present a molecular temperature probe based on the thermal decomposition of a thermo-sensitive molecule, namely, azobis[N-(2-carboxyethyl)-2-methylpropionamidine]. Fluoresceineamine (FA) was bound to the azo molecule at the IONP surface functionalized with poly(ethylene glycol) (PEG) spacers of different molecular weights.

View Article and Find Full Text PDF