Publications by authors named "Cindy Y Jao"

Cholesterol is a fundamental lipid component of eukaryotic membranes and a precursor of potent signaling molecules, such as oxysterols and steroid hormones. Cholesterol and oxysterols are also essential for Hedgehog signaling, a pathway critical in embryogenesis and cancer. Despite their importance, the use of imaging sterols in cells is currently very limited.

View Article and Find Full Text PDF

Phospholipids with a choline head group are abundant components of all biological membranes, performing critical functions in cellular structure, metabolism, and signaling. In spite of their importance, our ability to visualize choline phospholipids in vivo remains very limited. We present a simple and robust chemical strategy to image choline phospholipids, based on the metabolic incorporation of azidocholine analogues, that accurately reflects the normal biosynthetic incorporation of choline into cellular phospholipids.

View Article and Find Full Text PDF

The Hedgehog (Hh) signaling pathway plays critical roles in metazoan development and in cancer. How the Hh ligand is secreted and spreads to distant cells is unclear, given its covalent modification with a hydrophobic cholesterol molecule, which makes it stick to membranes. We demonstrate that Hh ligand secretion from vertebrate cells is accomplished via two distinct and synergistic cholesterol-dependent binding events, mediated by two proteins that are essential for vertebrate Hh signaling: the membrane protein Dispatched (Disp) and a member of the Scube family of secreted proteins.

View Article and Find Full Text PDF

Choline (Cho)-containing phospholipids are the most abundant phospholipids in cellular membranes and play fundamental structural as well as regulatory roles in cell metabolism and signaling. Although much is known about the biochemistry and metabolism of Cho phospholipids, their cell biology has remained obscure, due to the lack of methods for their direct microscopic visualization in cells. We developed a simple and robust method to label Cho phospholipids in vivo, based on the metabolic incorporation of the Cho analog propargylcholine (propargyl-Cho) into phospholipids.

View Article and Find Full Text PDF

We describe a chemical method to detect RNA synthesis in cells, based on the biosynthetic incorporation of the uridine analog 5-ethynyluridine (EU) into newly transcribed RNA, on average once every 35 uridine residues in total RNA. EU-labeled cellular RNA is detected quickly and with high sensitivity by using a copper (I)-catalyzed cycloaddition reaction (often referred to as "click" chemistry) with fluorescent azides, followed by microscopic imaging. We demonstrate the use of this method in cultured cells, in which we examine the turnover of bulk RNA after EU pulses of varying lengths.

View Article and Find Full Text PDF

Objectives: This study was designed to quantify the specific glycosaminoglycans (GAGs) in the midmembranous vocal fold (VF) lamina propria (LP) and to interpret their presence in relation to the known stresses borne by each LP layer.

Methods: GAGs from normal human LP and from both normal and scarred canine LPs were analyzed by fluorophore-assisted carbohydrate electrophoresis (FACE). Immunostaining was conducted to give insight into the spatial distribution of each GAG type.

View Article and Find Full Text PDF

We report the design and characterization of two genetically encoded fluorescent reporters of histone protein methylation. The reporters are four-part chimeric proteins consisting of a substrate peptide from the N-terminus of histone H3 fused to a chromodomain (a natural methyllysine-specific recognition domain), sandwiched between a fluorescence resonance energy transfer (FRET)-capable pair of fluorophores, cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP). Enzymatic methylation by a methyltransferase induces complexation of the methylated substrate peptide to the chromodomain, changing the FRET level between the flanking CFP and YFP domains.

View Article and Find Full Text PDF