The antiepileptic drug carbamazepine (CBZ) is ubiquitously present in the anthropogenic water cycle and is therefore of concern regarding the potable water supply. Despite of its persistent behavior in the aquatic environment, a redox dependent removal at bank filtration sites with anaerobic aquifer passage was reported repeatedly but not elucidated in detail yet. The reductive transformation of CBZ was studied, using abiotic systems (catalytic hydrogenation, electrochemistry) as well as biologically active systems (column systems, batch degradation tests).
View Article and Find Full Text PDFBenzotriazoles (BTs) are widely used corrosion inhibitors, incompletely removed in municipal wastewater treatment. The photochemical fate of the three BTs 1H-benzotriazole (1H-BT), 4-methyl-1H-benzotriazole (4Me-BT) and 5-methyl-1H-benzotriazole (5Me-BT) and of three microbial metabolites, was studied under simulated sunlight (290-800 nm) at neutral pH in aqueous solution for 24 h. The half-life, the quantum yield and the reaction rate were determined and a total of 36 photolysis products were detected and identified using liquid chromatography-high resolution-mass spectrometry.
View Article and Find Full Text PDFTransformation products (TPs) of environmental pollutants must be identified to understand biodegradation processes and reaction mechanisms and to assess the efficiency of treatment processes. The combination of oxidation by an electrochemical cell (EC) with analysis by liquid chromatography-high-resolution mass spectrometry (LC-HRMS) is a rapid approach for the determination and identification of TPs generated by natural microbial processes. Electrochemically generated TPs of the recalcitrant pharmaceutical carbamazepine (CBZ) were used for a target screening for TPs formed by the white-rot fungus Pleurotus ostreatus.
View Article and Find Full Text PDFDehalococcoides mccartyi strains transform many halogenated compounds and are used for bioremediation. Such anaerobic transformations were intensively studied with chlorinated and simply structured compounds such as chlorinated benzenes, ethenes, and ethanes. However, many halogenated oligocyclic aromatic compounds occur in nature as either naturally produced materials or as part of commercial products such as pharmaceuticals, pesticides, or flame retardants.
View Article and Find Full Text PDF