NADP(H)-dependent imine reductases (IREDs) are of interest in biocatalytic research due to their ability to generate chiral amines from imine/iminium substrates. In reaction protocols involving IREDs, glucose dehydrogenase (GDH) is generally used to regenerate the expensive cofactor NADPH by oxidation of d-glucose to gluconolactone. We have characterized different IREDs with regard to reduction of a set of bicyclic iminium compounds and have utilized H NMR and GC analyses to determine degree of substrate conversion and product enantiomeric excess (ee).
View Article and Find Full Text PDFElectronic absorption spectra are oftentimes used to identify reaction intermediates or substrates/products in enzymatic systems, as long as absorption bands can be unequivocally assigned to the species being studied. The latter task is far from trivial given the transient nature of some states and the complexity of the surrounding environment around the active site. To identify unique spectral fingerprints, controlled experiments with model compounds have been used in the past, but even these can sometimes be unreliable.
View Article and Find Full Text PDFThiamin diphosphate (ThDP)-dependent enzymes play vital roles in cellular metabolism in all kingdoms of life. In previous kinetic and structural studies, a communication between the active centers in terms of a negative cooperativity had been suggested for some but not all ThDP enzymes, which typically operate as functional dimers. To further underline this hypothesis and to test its universality, we investigated the binding of substrate analogue methyl acetylphosphonate (MAP) to three different ThDP-dependent enzymes acting on substrate pyruvate, namely, the Escherichia coli E1 component of the pyruvate dehydrogenase complex, E.
View Article and Find Full Text PDFBesides transketolase (TKT), a thiamin-dependent enzyme of the pentose phosphate pathway, the human genome encodes for two closely related transketolase-like proteins, which share a high sequence identity with TKT. Transketolase-like protein 1 (TKTL1) has been implicated in cancerogenesis as its cellular expression levels were reported to directly correlate with invasion efficiency of cancer cells and patient mortality. It has been proposed that TKTL1 exerts its function by catalyzing an unusual enzymatic reaction, a hypothesis that has been the subject of recent controversy.
View Article and Find Full Text PDF