New Findings: What is the central question of this study? DAPK3 contributes to the Ca -sensitization of vascular smooth muscle contraction: does this protein kinase participate in the myogenic response of cerebral arteries? What is the main finding and its importance? Small molecule inhibitors of DAPK3 effectively block the myogenic responses of cerebral arteries. HS38-dependent changes to vessel constriction occur independent of LC20 phosphorylation, and therefore DAPK3 appears to operate via the actin cytoskeleton. A role for DAPK3 in the myogenic response was not previously reported, and the results support a potential new therapeutic target in the cerebrovascular system.
View Article and Find Full Text PDFMyosin regulatory light chain (LC20) phosphorylation plays an important role in vascular smooth muscle contraction and cell migration. Ca2+/calmodulin-dependent myosin light chain kinase (MLCK) phosphorylates LC20 (its only known substrate) exclusively at S19. Rho-associated kinase (ROCK) and zipper-interacting protein kinase (ZIPK) have been implicated in the regulation of LC20 phosphorylation via direct phosphorylation of LC20 at T18 and S19 and indirectly via phosphorylation of MYPT1 (the myosin targeting subunit of myosin light chain phosphatase, MLCP) and Par-4 (prostate-apoptosis response-4).
View Article and Find Full Text PDFVascular smooth muscle cells of the renal afferent arteriole are unusual in that they must be able to contract very rapidly in response to a sudden increase in systemic blood pressure in order to protect the downstream glomerular capillaries from catastrophic damage. We showed that this could be accounted for, in part, by exclusive expression, at the protein level, of the "fast" (B) isoforms of smooth muscle myosin II heavy chains in the afferent arteriole, in contrast to other vascular smooth muscle cells such as the rat aorta and efferent arteriole which express exclusively the "slow" (A) isoforms (Shiraishi et al. (2003) FASEB.
View Article and Find Full Text PDFSustained vascular smooth muscle hypercontractility promotes hypertension and cardiovascular disease. The etiology of hypercontractility is not completely understood. New therapeutic targets remain vitally important for drug discovery.
View Article and Find Full Text PDFThe 20-kDa regulatory light chain of myosin II plays an important role in regulating smooth muscle contractile force. LC20 is phosphorylated canonically by myosin light chain kinase in a Ca/calmodulin-dependent manner at S19. The diphosphorylation of LC20 at T18 and S19 has been observed in smooth muscle tissues.
View Article and Find Full Text PDFPhosphorylation of the myosin-targeting subunit 1 of myosin light chain phosphatase (MYPT1) plays an important role in the regulation of smooth muscle contraction, and several sites of phosphorylation by different protein Ser/Thr kinases have been identified. Furthermore, in some instances, phosphorylation at specific sites affects phosphorylation at neighboring sites, with functional consequences. Characterization of the complex phosphorylation of MYPT1 in tissue samples at rest and in response to contractile and relaxant stimuli is, therefore, challenging.
View Article and Find Full Text PDFA novel inhibitor of zipper-interacting protein kinase (ZIPK) was used to examine the involvement of ZIPK in the regulation of smooth muscle contraction. Pretreatment of de-endothelialized rat caudal arterial smooth muscle strips with the pyrazolo[3,4-d]pyrimidinone inhibitor 2-((1-(3-chlorophenyl)-4-oxo-4,5-dihydro-1H-pyrazolo [3,4-d]-pyrimidin-6-yl)thio)propanamide (HS38) decreased the velocity of contraction (time to reach half-maximal force) induced by the phosphatase inhibitor calyculin A in the presence of Ca(2+) without affecting maximal force development. This effect was reversed following washout of HS38 and correlated with a reduction in the rate of phosphorylation of myosin 20-kDa regulatory light chains (LC20) but not of protein kinase C-potentiated inhibitory protein for myosin phosphatase of 17 kDa (CPI-17), prostate apoptosis response-4, or myosin phosphatase-targeting subunit 1 (MYPT1), all of which have been implicated in the regulation of vascular contractility.
View Article and Find Full Text PDFDepolarization of the vascular smooth muscle cell membrane evokes a rapid (phasic) contractile response followed by a sustained (tonic) contraction. We showed previously that the sustained contraction involves genistein-sensitive tyrosine phosphorylation upstream of the RhoA/Rho-associated kinase (ROK) pathway leading to phosphorylation of MYPT1 (the myosin-targeting subunit of myosin light chain phosphatase (MLCP)) and myosin regulatory light chains (LC20). In this study, we addressed the hypothesis that membrane depolarization elicits activation of the Ca(2+)-dependent tyrosine kinase Pyk2 (proline-rich tyrosine kinase 2).
View Article and Find Full Text PDFSmooth muscle contraction is activated primarily by phosphorylation at Ser19 of the regulatory light chain subunits (LC20) of myosin II, catalysed by Ca(2+)/calmodulin-dependent myosin light chain kinase. Ca(2+)-independent contraction can be induced by inhibition of myosin light chain phosphatase, which correlates with diphosphorylation of LC20 at Ser19 and Thr18, catalysed by integrin-linked kinase (ILK) and zipper-interacting protein kinase (ZIPK). LC20 diphosphorylation at Ser19 and Thr18 has been detected in mammalian vascular smooth muscle tissues in response to specific contractile stimuli (e.
View Article and Find Full Text PDFDuring activation of smooth muscle contraction, one myosin light chain kinase (MLCK) molecule rapidly phosphorylates many smooth muscle myosin (SMM) molecules, suggesting that muscle activation rates are influenced by the kinetics of MLCK-SMM interactions. To determine the rate-limiting step underlying activation of SMM by MLCK, we measured the kinetics of calcium-calmodulin (Ca²⁺CaM)-MLCK-mediated SMM phosphorylation and the corresponding initiation of SMM-based F-actin motility in an in vitro system with SMM attached to a coverslip surface. Fitting the time course of SMM phosphorylation to a kinetic model gave an initial phosphorylation rate, kp(o), of ~1.
View Article and Find Full Text PDFRho-associated kinase (ROK) activation plays an important role in K-induced contraction of rat caudal arterial smooth muscle (Mita et al., Biochem J. 2002; 364: 431–40).
View Article and Find Full Text PDFDAPK1 and ZIPK (also called DAPK3) are closely related serine/threonine protein kinases that regulate programmed cell death and phosphorylation of non-muscle and smooth muscle myosin. We have developed a fluorescence linked enzyme chemoproteomic strategy (FLECS) for the rapid identification of inhibitors for any element of the purinome and identified a selective pyrazolo[3,4-d]pyrimidinone (HS38) that inhibits DAPK1 and ZIPK in an ATP-competitive manner at nanomolar concentrations. In cellular studies, HS38 decreased RLC20 phosphorylation.
View Article and Find Full Text PDFOsCaM61 is one of five calmodulins known to be present in Oryza sativa that relays the increase of cytosolic [Ca(2+)] to downstream targets. OsCaM61 bears a unique C-terminal extension with a prenylation site. Using nuclear magnetic resonance (NMR) spectroscopy we studied the behavior of the calmodulin (CaM) domain and the C-terminal extension of OsCaM61 in the absence and presence of Ca(2+).
View Article and Find Full Text PDFThe protein prostate-apoptosis response (Par)-4 has been implicated in the regulation of smooth muscle contraction, based largely on studies with the A7r5 cell line. A mechanism has been proposed whereby Par-4 binding to MYPT1 (the myosin-targeting subunit of myosin light chain phosphatase, MLCP) blocks access of zipper-interacting protein kinase (ZIPK) to Thr697 and Thr855 of MYPT1, whose phosphorylation is associated with MLCP inhibition. Phosphorylation of Par-4 at Thr155 disrupts its interaction with MYPT1, exposing the sites of phosphorylation in MYPT1 and leading to MLCP inhibition and contraction.
View Article and Find Full Text PDFCa(2+) sensitization of smooth muscle contraction depends upon the activities of protein kinases, including Rho-associated kinase, that phosphorylate the myosin phosphatase targeting subunit (MYPT1) at Thr(697) and/or Thr(855) (rat sequence numbering) to inhibit phosphatase activity and increase contractile force. Both Thr residues are preceded by the sequence RRS, and it has been suggested that phosphorylation at Ser(696) prevents phosphorylation at Thr(697). However, the effects of Ser(854) and dual Ser(696)-Thr(697) and Ser(854)-Thr(855) phosphorylations on myosin phosphatase activity and contraction are unknown.
View Article and Find Full Text PDFThe principal signal to activate smooth muscle contraction is phosphorylation of the regulatory light chains of myosin (LC(20)) at Ser(19) by Ca(2+)/calmodulin-dependent myosin light chain kinase. Inhibition of myosin light chain phosphatase leads to Ca(2+)-independent phosphorylation at both Ser(19) and Thr(18) by integrin-linked kinase and/or zipper-interacting protein kinase. The functional effects of phosphorylation at Thr(18) on steady-state isometric force and relaxation rate were investigated in Triton-skinned rat caudal arterial smooth muscle strips.
View Article and Find Full Text PDFCPI-17 is a cytosolic protein of 17 kDa that becomes a potent inhibitor of certain type 1 protein serine/threonine phosphatases, including smooth muscle myosin light-chain phosphatase (MLCP), when phosphorylated at Thr38. Several protein kinases are capable of phosphorylating CPI-17 at this site in vitro; however, in intact tissue, compelling evidence only exists for phosphorylation by protein kinase C (PKC). Agonist-induced activation of heterotrimeric G proteins of the Gq/11 family via seven-transmembrane domain-containing, G protein-coupled receptors results in phospholipase Cbeta-mediated hydrolysis of membrane phosphatidylinositol 4,5-bisphosphate to generate inositol 1,4,5-trisphosphate (IP3) and 1,2-diacylglycerol (DAG).
View Article and Find Full Text PDFS100A11 is a member of the S100 family of EF-hand Ca(2+)-binding proteins, which is expressed in smooth muscle and other tissues. Ca(2+) binding to S100A11 induces a conformational change that exposes a hydrophobic surface for interaction with target proteins. Affinity chromatography with immobilized S100A11 was used to isolate a 70-kDa protein from smooth muscle that bound to S100A11 in a Ca(2+)-dependent manner and was identified by mass spectrometry as annexin A6.
View Article and Find Full Text PDFSmooth muscle contraction is activated by phosphorylation at Ser-19 of LC20 (the 20 kDa light chains of myosin II) by Ca2+/calmodulin-dependent MLCK (myosin light-chain kinase). Diphosphorylation of LC20 at Ser-19 and Thr-18 is observed in smooth muscle tissues and cultured cells in response to various contractile stimuli, and in pathological circumstances associated with hypercontractility. MLCP (myosin light-chain phosphatase) inhibition can lead to LC20 diphosphorylation and Ca2+-independent contraction, which is not attributable to MLCK.
View Article and Find Full Text PDFThe signal transduction pathway whereby the TxA2 (thromboxane A2) mimetic U-46619 activates vascular smooth muscle contraction was investigated in de-endothelialized rat caudal artery. U-46619-evoked contraction was inhibited by the TP receptor (TxA2 receptor) antagonist SQ-29548, the ROK (Rho-associated kinase) inhibitors Y-27632 and H-1152, the MLCK (myosin light-chain kinase) inhibitors ML-7, ML-9 and wortmannin, the voltagegated Ca2+-channel blocker nicardipine, and removal of extracellular Ca2+; the protein kinase C inhibitor GF109203x had no effect. U-46619 elicited Ca2+ sensitization in a-toxin-permeabilized tissue.
View Article and Find Full Text PDFHyperphosphorylation of the cardiac Ca2+ release channel (ryanodine receptor, RyR2) by protein kinase A (PKA) at serine-2808 has been proposed to be a key mechanism responsible for cardiac dysfunction in heart failure (HF). However, the sites of PKA phosphorylation in RyR2 and their phosphorylation status in HF are not well defined. Here we used various approaches to investigate the phosphorylation of RyR2 by PKA.
View Article and Find Full Text PDFA variety of anchoring proteins target specific protein kinase C (PKC) isoenzymes to particular subcellular locations or multimeric signaling complexes, thereby achieving a high degree of substrate specificity by localizing the kinase in proximity to specific substrates. PKCepsilon is widely expressed in smooth muscle tissues, but little is known about its targeting and substrate specificity. We have used a Far-Western (overlay) approach to identify PKCepsilon-binding proteins in vascular smooth muscle of the rat aorta.
View Article and Find Full Text PDFDissociation of FKBP12.6 from the cardiac Ca2+-release channel (RyR2) as a consequence of protein kinase A (PKA) hyperphosphorylation of RyR2 at a single amino acid residue, serine-2808, has been proposed as an important mechanism underlying cardiac dysfunction in heart failure. However, the issue of whether PKA phosphorylation of RyR2 can dissociate FKBP12.
View Article and Find Full Text PDFIntegrin-linked kinase (ILK) has been implicated in Ca(2+)- independent contraction of smooth muscle via its ability to phosphorylate myosin. We investigated the possibility that this kinase might also phosphorylate and regulate the myosin light-chain phosphatase inhibitor proteins CPI-17 [protein kinase C (PKC)-dependent phosphatase inhibitor of 17 kDa] and PHI-1 (phosphatase holoenzyme inhibitor-1), known substrates of PKC. Both phosphatase inhibitors were phosphorylated by ILK in an in-gel kinase assay and in solution.
View Article and Find Full Text PDF