Transcriptional coregulators and transcription factors (TFs) contain intrinsically disordered regions (IDRs) that are critical for their association and function in gene regulation. More recently, IDRs have been shown to promote multivalent protein-protein interactions between coregulators and TFs to drive their association into condensates. By contrast, here we demonstrate how the IDR of the corepressor LSD1 excludes TF association, acting as a dynamic conformational switch that tunes repression of active cis-regulatory elements.
View Article and Find Full Text PDFTargeted protein degradation (TPD) holds immense promise for drug discovery, but mechanisms of acquired resistance to degraders remain to be fully identified. Here, we used clustered regularly interspaced short palindromic repeats (CRISPR)-suppressor scanning to identify mechanistic classes of drug resistance mutations to molecular glue degraders in GSPT1 and RBM39, neosubstrates targeted by E3 ligase substrate receptors cereblon and DCAF15, respectively. While many mutations directly alter the ternary complex heterodimerization surface, distal resistance sites were also identified.
View Article and Find Full Text PDFUnderstanding the mechanism of small molecules is a critical challenge in chemical biology and drug discovery. Medicinal chemistry is essential for elucidating drug mechanism, enabling variation of small molecule structure to gain structure-activity relationships (SARs). However, the development of complementary approaches that systematically vary target protein structure could provide equally informative SARs for investigating drug mechanism and protein function.
View Article and Find Full Text PDFPostpartum hemorrhage (PPH) is a very common obstetric emergency with high morbidity and mortality rates worldwide. Understanding its etiology is fundamental to effectively managing PPH in an acute setting. Active management of the third stage of labor is also a key component in its prevention.
View Article and Find Full Text PDFBackground: Adjacent gene pairs in the yeast genome have a tendency to express concurrently. Sharing of regulatory elements within the intergenic region of those adjacent gene pairs was often considered the major mechanism responsible for such co-expression. However, it is still in debate to what extent that common transcription factors (TFs) contribute to the co-expression of adjacent genes.
View Article and Find Full Text PDF