Traumatic brain injury (TBI) causes pathophysiology that may significantly decrease quality of life over time. A major propagator of this response is chronic, maladaptive neuroinflammation, which can be exacerbated by stressors such as sleep fragmentation (SF). This study determined whether post-TBI SF had lasting behavioral and inflammatory effects even with a period of recovery.
View Article and Find Full Text PDFRapid and efficient formulation development is critical to successfully bringing therapeutic protein drug products into a competitive market under increasingly aggressive timelines. Conventional application of high throughput techniques for formulation development have been limited to lower protein concentrations, which are not applicable to late stage development of high concentration therapeutics. In this work, we present a high throughput (HT) formulation workflow that enables screening at representative concentrations via integration of a micro-buffer exchange system with automated analytical instruments.
View Article and Find Full Text PDFA thermoresponsive injectable hydrogel scaffold for tissue engineering has been developed, whereby the scaffold was injected as a liquid at room temperature, and gelled at the target site in response to the change in body temperature. Our approach involved suspending thermoresponsive liposomes, which encapsulated horseradish peroxidase (HRP), in a hyaluronic acid-tyramine (HA-Tyr) conjugate and hydrogen peroxide (HO) solution. At room temperature, HRP was separated from the HA-Tyr conjugate by the lipid membrane, and hence the precursor solution remained as a liquid and was injectable.
View Article and Find Full Text PDFThe objective of this study was to determine the potential for cartilage production within a hyaluronic acid-tyramine (HA-Tyr) hydrogel scaffold. Chondrocytes were encapsulated within HA-Tyr hydrogels and subcutaneously implanted in mice. The HA-Tyr hydrogels were formed by the oxidative coupling of Tyr moieties catalyzed by hydrogen peroxide (HO) and horseradish peroxidase (HRP).
View Article and Find Full Text PDFBackground: This study investigated the relationships between histomorphological aspects of breast capsules, including capsule thickness, collagen fiber alignment, the presence of α-smooth muscle actin (α-SMA)-positive myofibroblasts, and clinical observations of capsular contracture.
Methods: Breast capsule samples were collected at the time of implant removal in patients undergoing breast implant replacement or revision surgery. Capsular contracture was scored preoperatively using the Baker scale.