Obesity is a major worldwide public health issue that increases the risk to develop cardiovascular diseases, type-2 diabetes, and liver diseases. Obesity is characterized by an increase in adipose tissue (AT) mass due to adipocyte hyperplasia and/or hypertrophia, leading to profound remodeling of its three-dimensional structure. Indeed, the maximal capacity of AT to expand during obesity is pivotal to the development of obesity-associated pathologies.
View Article and Find Full Text PDFObjective: This study evaluated in obese rats the effect of exercise training on eNOS expressed in perivascular adipose tissue (PVAT) and its consequences on vascular function.
Methods: Wistar rats were divided in 3 groups: control (standard diet), obese (high fat/high sucrose diet, HFS for 15 weeks), and exercised obese (HFS diet and exercise from week 6 to week 15, HFS-Ex) rats. The eNOS-adiponectin pathway and reactive oxygen species (ROS) were evaluated.
Obesity modifies T cell populations in adipose tissue, thereby contributing to adipose tissue inflammation and insulin resistance. Here, we show that Rab4b, a small GTPase governing endocytic trafficking, is pivotal in T cells for the development of these pathological events. Rab4b expression is decreased in adipose T cells from mice and patients with obesity.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
March 2018
Sympathetic hyperactivation, a common feature of obesity and metabolic syndrome, is a key trigger of hypertension. However, some obese subjects with autonomic imbalance present a dissociation between sympathetic activity-mediated vasoconstriction and increased blood pressure. Here, we aimed to determine in a rat model of metabolic syndrome whether the endothelium endothelial nitric oxide (NO) synthase (eNOS)-NO pathway contributes to counteract the vasopressor effect of the sympathetic system.
View Article and Find Full Text PDFObjective: To assess vascular function during acute hyperglycemia induced by commercial sugar-sweetened beverage (SSB) consumption and its effect on underlying mechanisms of the nitric oxide pathway.
Approach And Results: In a randomized, single-blind, crossover trial, 12 healthy male participants consumed 600 mL (20 oz.) of water or a commercial SSB across 2 visits.
Objectives: Controversy exists over the effect of acute hyperglycemia on vascular function. In this systematic review, we compared the effect of acute hyperglycemia on endothelial and vascular smooth muscle functions across healthy and cardiometabolic diseased subjects.
Approach And Results: A systematic search of MEDLINE, EMBASE, and Web of Science from inception until July 2014 identified articles evaluating endothelial or vascular smooth muscle function during acute hyperglycemia and normoglycemia.