Eliciting protective titers of HIV-1 broadly neutralizing antibodies (bnAbs) is a goal of HIV-1 vaccine development, but current vaccine strategies have yet to induce bnAbs in humans. Many bnAbs isolated from HIV-1-infected individuals are encoded by immunoglobulin gene rearrangments with infrequent naive B cell precursors and with unusual genetic features that may be subject to host regulatory control. Here, we administer antibodies targeting immune cell regulatory receptors CTLA-4, PD-1 or OX40 along with HIV envelope (Env) vaccines to rhesus macaques and bnAb immunoglobulin knock-in (KI) mice expressing diverse precursors of CD4 binding site HIV-1 bnAbs.
View Article and Find Full Text PDFDominant antibody responses in vaccinees who received the HIV-1 multiclade (A, B, and C) envelope (Env) DNA/recombinant adenovirus virus type 5 (rAd5) vaccine studied in HIV-1 Vaccine Trials Network (HVTN) efficacy trial 505 (HVTN 505) targeted Env gp41 and cross-reacted with microbial antigens. In this study, we asked if the DNA/rAd5 vaccine induced a similar antibody response in rhesus macaques (RMs), which are commonly used as an animal model for human HIV-1 infections and for testing candidate HIV-1 vaccines. We also asked if gp41 immunodominance could be avoided by immunization of neonatal RMs during the early stages of microbial colonization.
View Article and Find Full Text PDFIn the RV144 gp120 HIV vaccine trial, decreased transmission risk was correlated with Abs that reacted with a linear epitope at a lysine residue at position 169 (K169) in the HIV-1 envelope (Env) V2 region. The K169 V2 response was restricted to Abs bearing Vλ rearrangements that expressed aspartic acid/glutamic acid in CDR L2. The AE.
View Article and Find Full Text PDFThe ALVAC prime/ALVAC + AIDSVAX B/E boost RV144 vaccine trial induced an estimated 31% efficacy in a low-risk cohort where HIV‑1 exposures were likely at mucosal surfaces. An immune correlates study demonstrated that antibodies targeting the V2 region and in a secondary analysis antibody-dependent cellular cytotoxicity (ADCC), in the presence of low envelope-specific (Env-specific) IgA, correlated with decreased risk of infection. Thus, understanding the B cell repertoires induced by this vaccine in systemic and mucosal compartments are key to understanding the potential protective mechanisms of this vaccine regimen.
View Article and Find Full Text PDFThe HIV-1 envelope protein (Env) has evolved to subvert the host immune system, hindering viral control by the host. The tryptophan metabolic enzyme kynureninase (KYNU) is mimicked by a portion of the HIV Env gp41 membrane proximal region (MPER) and is cross-reactive with the HIV broadly neutralizing Ab (bnAb) 2F5. Molecular mimicry of host proteins by pathogens can lead to autoimmune disease.
View Article and Find Full Text PDFMost HIV-1 vaccines elicit neutralizing antibodies that are active against highly sensitive (tier-1) viruses or rare cases of vaccine-matched neutralization-resistant (tier-2) viruses, but no vaccine has induced antibodies that can broadly neutralize heterologous tier-2 viruses. In this study, we isolated antibodies from an HIV-1-infected individual that targeted the gp41 membrane-proximal external region (MPER) that may have selected single-residue changes in viral variants in the MPER that resulted in neutralization sensitivity to antibodies targeting distal epitopes on the HIV-1 Env. Similarly, a single change in the MPER in a second virus from another infected-individual also conferred enhanced neutralization sensitivity.
View Article and Find Full Text PDFAntibodies that neutralize autologous transmitted/founder (TF) HIV occur in most HIV-infected individuals and can evolve to neutralization breadth. Autologous neutralizing antibodies (nAbs) against neutralization-resistant (Tier-2) viruses are rarely induced by vaccination. Whereas broadly neutralizing antibody (bnAb)-HIV-Envelope structures have been defined, the structures of autologous nAbs have not.
View Article and Find Full Text PDF