A highly-sensitive optical fiber surface-enhanced Raman scattering (SERS) sensor has been developed by interference lithography. While one facet of the optical fiber is patterned with silver-coated nanopillar array as a SERS platform, the other end of the probe is used, in a remote end detection, to couple the excitation laser into the fiber and send the SERS signal to the spectrometer. SERS performance of the probe is characterized using trans-1,2-bis(4-pyridyl)-ethylene (BPE) monolayer and an enhancement factor of 1.
View Article and Find Full Text PDFSurface enhanced Raman spectroscopy (SERS) has been increasingly utilized as an analytical technique with significant chemical and biological applications (Qian et al 2008 Nat. Biotechnol. 26 83; Fujita et al 2009 J.
View Article and Find Full Text PDFWe investigate tunable plasmon resonant cavity arrays in paired parallel nanowire waveguides. Resonances are observed when the waveguide length is an odd multiple of quarter plasmon wavelengths, consistent with boundary conditions of node and antinode at the ends. Two nanowire waveguides satisfy the dispersion relation of a planar metal-dielectric-metal waveguide of equivalent width equal to the square field average weighted gap.
View Article and Find Full Text PDFWe have developed improved cavity-finesse methods for characterizing the diffraction efficiencies of large gratings at the Littrow angle. These methods include measuring cavity length with optical techniques, using a Michelson interferometer to calibrate piezoelectric transducer nonlinearities and angle-tuning procedures to confirm optimal alignment. We used these methods to characterize two 20 cm scale dielectric gratings.
View Article and Find Full Text PDF