Surveys aimed at finding threatened and invasive species can be challenging due to individual rarity and low and variable individual detection rates. Detection rate in plant surveys typically varies due to differences among observers, among the individual plants being surveyed (targets), and across background environments. Interactions among these 3 components may occur but are rarely estimated due to limited replication and control during data collection.
View Article and Find Full Text PDFLand managers decide how to allocate resources among multiple threats that can be addressed through multiple possible actions. Additionally, these actions vary in feasibility, effectiveness, and cost. We sought to provide a way to optimize resource allocation to address multiple threats when multiple management options are available, including mutually exclusive options.
View Article and Find Full Text PDFConserving biodiversity and combating ecological hazards require cost-effective allocation of limited resources among potential management projects. Project priorities, however, can change over time as underlying social-ecological systems progress, novel priorities emerge, and management capabilities evolve. Thus, reallocation of ongoing investments in response to shifting priorities could improve management outcomes and address urgent demands, especially when additional funding is not available immediately.
View Article and Find Full Text PDFDetecting rare species is important for both threatened species management and invasive species eradication programs. Conservation scent dogs provide an olfactory survey tool that has advantages over traditional visual and auditory survey techniques for some cryptic species. From the literature, we identified 5 measures important in evaluating the use of scent dogs: precision, sensitivity, effort, cost, and comparison with other techniques.
View Article and Find Full Text PDFIntroduction: Waterpipe tobacco smoking continues to show increasing popularity, especially among individuals between 18 and 22 years old. Waterpipe tobacco smoke (WTS) is a mixture of particulates and gases formed from the combustion of the charcoal and volatilisation and humidification of the tobacco+humectant+flavouring substrate known as shisha or mu'assel. As such, variation in the configuration of the waterpipe may affect the particles produced.
View Article and Find Full Text PDFThe use of waterpipes in the United States is increasing in a largely unregulated market. The shisha smoked in a waterpipe is a complex matrix of tobacco, flavorings, and humectant with smoke generated by an external heat source. This study explored the relationship between shisha components and the particulate matter size distributions and toxicity of smoke generated with heating.
View Article and Find Full Text PDFField data collection can be expensive, time consuming, and difficult; insightful research requires statistical analyses supported by sufficient data. Pilot studies and power analysis provide guidance on sampling design but can be challenging to perform, as ecologists increasingly collect multiple types of data over different scales. Despite a growing simulation literature, it remains unclear how to appropriately design data collection for many complex projects.
View Article and Find Full Text PDFWomen comprise a minority of the Science, Technology, Engineering, Mathematics, and Medicine (STEMM) workforce. Quantifying the gender gap may identify fields that will not reach parity without intervention, reveal underappreciated biases, and inform benchmarks for gender balance among conference speakers, editors, and hiring committees. Using the PubMed and arXiv databases, we estimated the gender of 36 million authors from >100 countries publishing in >6000 journals, covering most STEMM disciplines over the last 15 years, and made a web app allowing easy access to the data (https://lukeholman.
View Article and Find Full Text PDFAdaptive management is a framework for resolving key uncertainties while managing complex ecological systems. Its use has been prominent in fisheries research and wildlife harvesting; however, its application to other areas of environmental management remains somewhat limited. Indeed, adaptive management has not been used to guide and inform metapopulation restoration, despite considerable uncertainty surrounding such actions.
View Article and Find Full Text PDFInvasive species are a cause for concern in natural and economic systems and require both monitoring and management. There is a trade-off between the amount of resources spent on surveying for the species and conducting early management of occupied sites, and the resources that are ultimately spent in delayed management at sites where the species was present but undetected. Previous work addressed this optimal resource allocation problem assuming that surveys continue despite detection until the initially planned survey effort is consumed.
View Article and Find Full Text PDFHuman perception of plant leaf and flower colour can influence species management. Colour and colour contrast may influence the detectability of invasive or rare species during surveys. Quantitative, repeatable measures of plant colour are required for comparison across studies and generalisation across species.
View Article and Find Full Text PDFRecent studies suggest that plant detection is not perfect, even for large, highly visible plants. However, this is often not taken into account during plant surveys where failing to detect a plant when present can result in poor management and biodiversity outcomes. Including knowledge of imperfect detectability into survey design and evaluation is hampered by the paucity of empirical data, and in particular, how detectability will change with search effort, plant size and abundance, the surrounding vegetation, or observer experience.
View Article and Find Full Text PDFEnvironmental managers must decide how to invest available resources. Researchers have previously determined how to allocate conservation resources among regions, design nature reserves, allocate funding to species conservation programs, design biodiversity surveys and monitoring programs, manage species and invest in greenhouse gas mitigation schemes. However, these issues have not been addressed with a unified theory.
View Article and Find Full Text PDFAdaptive management has a long history in the natural resource management literature, but despite this, few practitioners have developed adaptive strategies to conserve threatened species. Active adaptive management provides a framework for valuing learning by measuring the degree to which it improves long-run management outcomes. The challenge of an active adaptive approach is to find the correct balance between gaining knowledge to improve management in the future and achieving the best short-term outcome based on current knowledge.
View Article and Find Full Text PDFInvasive species surveillance has typically been targeted to where the species is most likely to occur. However, spatially varying environmental characteristics and land uses may affect more than just the probability of occurrence. Biodiversity or economic value, and the ease of detection and control are also likely to vary.
View Article and Find Full Text PDFActive adaptive management (AAM) is an approach to wildlife management that acknowledges our imperfect understanding of natural systems and allows for some resolution of our uncertainty. Such learning may be characterized by risky strategies in the short term. Experimentation is only considered acceptable if it is expected to be repaid by increased returns in the long term, generated by an improved understanding of the system.
View Article and Find Full Text PDFActive adaptive management is increasingly advocated in natural resource management and conservation biology. Active adaptive management looks at the benefit of employing strategies that may be suboptimal in the near term but which may provide additional information that will facilitate better management in future years. However, when comparing management policies it is traditional to weigh future rewards geometrically (at a constant discount rate) which results in far-distant rewards making a negligible contribution to the total benefit.
View Article and Find Full Text PDFWe often need to estimate the size of wild populations to determine the appropriate management action, for example, to set a harvest quota. Monitoring is usually planned under the assumption that it must be carried out at fixed intervals in time, typically annually, before the harvest quota is set. However, monitoring can be very expensive, and we should weigh the cost of monitoring against the improvement that it makes in decision making.
View Article and Find Full Text PDF