Publications by authors named "Cindy Gutzeit"

Background: Since the beginning of the COVID-19 pandemic, several variants of concern (VOC) have emerged for which there is evidence of an increase in transmissibility, more severe disease, and/or reduced vaccine effectiveness. Effective COVID-19 vaccine strategies are required to achieve broad protective immunity against current and future VOC.

Methods: We conducted immunogenicity and challenge studies in macaques and hamsters using a bivalent recombinant vaccine formulation containing the SARS-CoV-2 prefusion-stabilized Spike trimers of the ancestral D614 and the variant Beta strains with AS03 adjuvant (CoV2 preS dTM-AS03) in a primary immunization setting.

View Article and Find Full Text PDF

The rapid spread of the SARS-CoV-2 Omicron subvariants, despite the implementation of booster vaccination, has raised questions about the durability of protection conferred by current vaccines. Vaccine boosters that can induce broader and more durable immune responses against SARS-CoV-2 are urgently needed. We recently reported that our Beta-containing protein-based SARS-CoV-2 spike booster vaccine candidates with AS03 adjuvant (CoV2 preS dTM-AS03) elicited robust cross-neutralizing antibody responses at early timepoints against SARS-CoV-2 variants of concern in macaques primed with mRNA or protein-based subunit vaccine candidates.

View Article and Find Full Text PDF
Article Synopsis
  • Since 2019, COVID-19 has infected hundreds of millions globally, highlighting the importance of developing vaccines in response to variants and vaccine-induced immunity issues.
  • A new recombinant plant-derived vaccine, CoVLP, and a variant-targeted version, CoVLP.B1351, have shown promise in mouse studies to elicit strong immune responses against various COVID-19 variants.
  • Both vaccination approaches generated robust neutralizing antibodies, with a slight advantage for the heterologous prime-boost strategy over the traditional one.
View Article and Find Full Text PDF

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants that partly evade neutralizing antibodies raises concerns of reduced vaccine effectiveness and increased infection. We previously demonstrated that the SARS-CoV-2 spike protein vaccine adjuvanted with AS03 (CoV2 preS dTM-AS03) elicits robust neutralizing antibody responses in naïve subjects. Here we show that, in macaques primed with mRNA or protein-based subunit vaccine candidates, one booster dose of CoV2 preS dTM-AS03 (monovalent D614 or B.

View Article and Find Full Text PDF

Adjuvanted soluble protein vaccines have been used extensively in humans for protection against various viral infections based on their robust induction of antibody responses. Here, soluble prefusion-stabilized spike protein trimers (preS dTM) from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were formulated with the adjuvant AS03 and administered twice to nonhuman primates (NHPs). Binding and functional neutralization assays and systems serology revealed that the vaccinated NHP developed AS03-dependent multifunctional humoral responses that targeted distinct domains of the spike protein and bound to a variety of Fc receptors mediating immune cell effector functions in vitro.

View Article and Find Full Text PDF

Adjuvanted soluble protein vaccines have been used extensively in humans for protection against various viral infections based on their robust induction of antibody responses. Here, soluble prefusion-stabilized spike trimers (preS dTM) from the severe acute respiratory syndrome coronavirus (SARS-CoV-2) were formulated with the adjuvant AS03 and administered twice to nonhuman primates (NHP). Binding and functional neutralization assays and systems serology revealed that NHP developed AS03-dependent multi-functional humoral responses that targeted multiple spike domains and bound to a variety of antibody F receptors mediating effector functions .

View Article and Find Full Text PDF

B cells thwart antigenic aggressions by releasing immunoglobulin M (IgM), IgG, IgA, and IgE, which deploy well-understood effector functions. In contrast, the role of secreted IgD remains mysterious. We found that some B cells generated IgD-secreting plasma cells following early exposure to external soluble antigens such as food proteins.

View Article and Find Full Text PDF

IgD emerged soon after IgM at the time of inception of the adaptive immune system. Despite its evolutionary conservation from fish to humans, the specific functions of IgD have only recently begun to be elucidated. Mature B cells undergo alternative mRNA splicing to express IgD and IgM receptors with identical antigenic specificity.

View Article and Find Full Text PDF

Mechanistic target of rapamycin (mTOR) enhances immunity in addition to orchestrating metabolism. Here we show that mTOR coordinates immunometabolic reconfiguration of marginal zone (MZ) B cells, a pre-activated lymphocyte subset that mounts antibody responses to T-cell-independent antigens through a Toll-like receptor (TLR)-amplified pathway involving transmembrane activator and CAML interactor (TACI). This receptor interacts with mTOR via the TLR adapter MyD88.

View Article and Find Full Text PDF
Article Synopsis
  • Secretory immunoglobulin A (SIgA) is known to enhance the relationship between host and gut microbiota, while the role of secretory immunoglobulin M (SIgM) is still not fully understood.
  • Research indicates that gut IgM plasma cells are more common in humans than in mice and are closely linked to a wide variety of memory IgM B cells found throughout the intestine.
  • Memory IgM B cells can switch to producing IgA when stimulated by specific signals, suggesting that SIgM may enhance the attachment of diverse bacteria to mucus in the gut, potentially improving gut health by working alongside SIgA.
View Article and Find Full Text PDF

Allergic diseases develop in genetically susceptible individuals in a complex interplay with the environment, usually early in life. We have previously shown that the anthroposophic lifestyle is associated with reduced risk of allergic disease in children, but details on the influencing environmental factors are largely unknown. This study aims to elucidate if anthroposophic lifestyle influences fetal exposure to selected toxic and essential elements.

View Article and Find Full Text PDF

Complex and diverse communities of bacteria establish mutualistic and symbiotic relationships with the gut after birth. The intestinal immune system responds to bacterial colonization by acquiring a state of hypo-responsiveness against commensals and active readiness against pathogens. The resulting homeostatic balance involves a continuous dialog between the microbiota and lymphocytes with the intermediation of epithelial and dendritic cells.

View Article and Find Full Text PDF

Exosomes, nano-sized membrane vesicles, are released by various cells and are found in many human body fluids. They are active players in intercellular communication and have immune-suppressive, immune-regulatory, and immune-stimulatory functions. EBV is a ubiquitous human herpesvirus that is associated with various lymphoid and epithelial malignancies.

View Article and Find Full Text PDF

Background: Growing up in families with an anthroposophic lifestyle has been associated with reduced risk of allergic disease in children. The aim of this report was to assess whether children with this lifestyle are infected earlier with Epstein-Barr virus (EBV), which has been associated with reduced risk of allergic disease, and three other herpesviruses potentially involved in allergy development, namely Human herpesvirus 6 (HHV6), Human herpesvirus 7 (HHV7) and cytomegalovirus (CMV).

Methods: Within the ALADDIN (Assessment of Lifestyle and Allergic Disease During Infancy), birth cohort study 157 children were categorized according to lifestyle into anthroposophic and non-anthroposophic.

View Article and Find Full Text PDF

Exosomes are nano-sized membrane vesicles released from a wide variety of cells, formed in endosomes by inward budding of the endosomal limiting membrane. They have immune stimulatory-, inhibitory-, or tolerance-inducing effects, depending on their cellular origin, which is why they are investigated for use in vaccine and immune therapeutic strategies. In this study, we explored whether exosomes of different origins and functions can selectively target different immune cells in human peripheral blood.

View Article and Find Full Text PDF

Virulent varicella-zoster virus (VZV) can spread in immunocompetent humans, resulting in symptoms mostly of the skin. In contrast, vaccine Oka (V-Oka), the attenuated VZV vaccine strain, only rarely causes clinical reactions. The mechanisms underlying these pathogenetic differences are unclear.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) of magnetically labeled stem cells has become a valuable tool in the understanding and evaluation of experimental stem cell-based therapies of degenerative central nervous system disorders. This comprehensive study assesses the impact of magnetic labeling of both human and rodent stem cell-containing populations on multiple biologic parameters as maintenance of stemness and oxidative stress levels. Cells were efficiently magnetically labeled with very small superparamagnetic iron oxide particles.

View Article and Find Full Text PDF

Protein transduction domains (PTDs) have been used to deliver a variety of biologically active cargo across cellular membranes. However the potential of PTDs to mediate transport of nanoparticular structures into the cytoplasm bypassing the endosomal compartment remains unclear. Cell-permeable virus-like particles (VLPs) harboring a marker gene based on hepatitis B virus nucleocaspids were established.

View Article and Find Full Text PDF

Iron oxide particles are a promising marker in molecular magnetic resonance imaging. They are used to label distinct cell populations either in vitro or in vivo. We investigated for the first time whether small citrate-coated very small superparamagnetic iron oxide particles (VSOPs) can lead to an increase in cellular oxidative stress.

View Article and Find Full Text PDF