Objective: To investigate neurocognitive deficits in children with Congenital Central Hypoventilation Syndrome (CCHS) by comparing them to their parents, since parents comprise a particularly suitable control group matched on disease-extrinsic factors that can influence neurocognitive functioning. We compared CCHS patients to their parents and to population norms, hypothesizing that they would obtain lower intelligence test scores than both groups. We also compared patient-parent differences against patient-normative differences, to determine whether the two analytic approaches would yield different results.
View Article and Find Full Text PDFBackground: Congenital Central Hypoventilation Syndrome (CCHS) is a rare neurocristopathy characterized by severe hypoventilation and autonomic dysregulation, with typical presentation in the neonatal period, and deficient cognitive skills in school-aged patients. We hypothesized that younger (preschool) children with CCHS would also show neurocognitive delay and that CCHS-related physiologic factors would impact neurocognitive test results.
Methods: We studied developmental (Bayley) test results collected during routine clinical care in 31 children (mean age 25.
Background: Congenital central hypoventilation syndrome (CCHS) is a rare neurocristopathy, which includes a control of breathing deficit and features of autonomic nervous system (ANS) dysregulation. In recognition of the fundamental role of the ANS in temperature regulation and rhythm and the lack of any prior characterization of circadian temperature rhythms in CCHS, we sought to explore peripheral and core temperatures and circadian patterning. We hypothesized that CCHS patients would exhibit lower peripheral skin temperatures (PST), variability, and circadian rhythmicity (vs.
View Article and Find Full Text PDFHypoventilation is a defining feature of Rapid-onset Obesity with Hypothalamic dysfunction, Hypoventilation and Autonomic Dysregulation (ROHHAD), a rare respiratory and autonomic disorder. This chronic hypoventilation has been explained as the result of dysfunctional chemosensory control circuits, possibly affecting peripheral afferent input, central integration, or efferent motor control. However, chemosensory function has never been quantified in a cohort of ROHHAD patients.
View Article and Find Full Text PDFCongenital central hypoventilation syndrome (CCHS) is a neurodevelopmental disorder characterized by life-threatening hypoventilation, possibly resulting from disruption of central chemosensory integration. However, animal models suggest the possibility of residual chemosensory function in the human disease. Cardioventilatory function in a large cohort with CCHS and verified paired-like homeobox 2B (PHOX2B) mutations was assessed to determine the extent and genotype dependence of any residual chemosensory function in these patients.
View Article and Find Full Text PDFIntroduction: Congenital central hypoventilation syndrome (CCHS) is characterized by alveolar hypoventilation, autonomic nervous system (ANS) dysregulation (ANSD), and mutations in the paired-like homeobox 2B (PHOX2B) gene. ANSD in CCHS affects multiple systems and includes ophthalmologic abnormalities. We hypothesized that quantitative pupil measures, obtained using pupillometry, would vary between cases with CCHS and controls and within those with CCHS by PHOX2B genotype.
View Article and Find Full Text PDF