Publications by authors named "Cindy D Beyer"

Zwitterionic peptides are facile low-fouling compounds for environmental applications as they are biocompatible and fully biodegradable as their degradation products are just amino acids. Here, a set of histidine (H) and glutamic acid (E), as well as lysine (K) and glutamic acid (E) based peptide sequences with zwitterionic properties were synthesized. Both oligopeptides (KE)K and (HE)H were synthesized in d and l configurations to test their ability to resist the nonspecific adsorption of the proteins lysozyme and fibrinogen.

View Article and Find Full Text PDF

Layer-by-layer (LbL) assembly is a versatile platform for applying coatings and studying the properties of promising compounds for antifouling applications. Here, alginate-based LbL coatings were fabricated by alternating the deposition of alginic acid and chitosan or polyethylenimine to form multilayer coatings. Films were prepared with either odd or even bilayer numbers to investigate if the termination of the LbL coatings affects the physicochemical properties, resistance against the nonspecific adsorption (NSA) of proteins, and antifouling efficacy.

View Article and Find Full Text PDF

Peptide-functionalized surfaces, composed of optimized l-peptides, show a high resistance toward nonspecific adsorption of proteins. As l-peptides are known to be prone to proteolytic degradation, the aim of this work is to enhance the stability against enzymatic degradation by using the all d-peptide mirror image of the optimized l-peptides and to determine if the all d-enantiomer retains the protein-resistant and antifouling properties. Two l-peptides and their d-peptide mirror images, some of them containing the nonproteinogenic amino acid α-aminoisobutyric acid (Aib), were synthesized and tested against non-specific adsorption of the proteins lysozyme and fibrinogen and the settlement of marine diatom and marine bacteria .

View Article and Find Full Text PDF

Assessing the efficiency of the next generation of protective marine coatings is highly relevant for their optimization. In this paper, a parallelized microfluidic testing device is presented to quantify the accumulation of a model organism (Navicula perminuta) under constant laminar flow. Using automated microscopy in conjunction with image analysis, the adhesion densities on the tested surfaces could be determined after exposure to a flow of suspended algae for 90 min.

View Article and Find Full Text PDF