Publications by authors named "Cindy Buffone"

Article Synopsis
  • Scientists are trying to understand how viruses, like HIV-1, get into the cell's nucleus through special openings called nuclear pore complexes (NPCs).
  • They found that a part of the HIV-1 virus called the capsid (CA) is really important for this process, as it interacts with specific proteins called nucleoporins (Nups) in the NPCs.
  • Researchers discovered that certain nucleoporins (Nup35, Nup153, and POM121) help HIV-1 get inside the nucleus, and that if the capsid is changed or certain host factors are removed, the virus has a harder time getting in.
View Article and Find Full Text PDF

Overexpression of the human Sad-1-Unc-84 homology protein 2 (SUN2) blocks HIV-1 infection in a capsid-dependent manner. In agreement, we showed that overexpression of SUN1 (Sad1 and UNC-84a) also blocks HIV-1 infection in a capsid-dependent manner. SUN2 and the related protein SUN1 are transmembrane proteins located in the inner membrane of the nuclear envelope.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 infections can cause coronavirus disease 2019 (COVID-19), which manifests with a range of severities from mild illness to life-threatening pneumonia and multi-organ failure. Severe COVID-19 is characterized by an inflammatory signature, including high levels of inflammatory cytokines, alveolar inflammatory infiltrates and vascular microthrombi. Here we show that patients with severe COVID-19 produced a unique serologic signature, including an increased likelihood of IgG1 with afucosylated Fc glycans.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections can cause Coronavirus Disease 2019 (COVID-19), which manifests with a range of severities from mild illness to life threatening pneumonia and multi-organ failure. Severe COVID-19 is characterized by an inflammatory signature including high levels of inflammatory cytokines, alveolar inflammatory infiltrates and vascular microthrombi. Here we show that severe COVID-19 patients produced a unique serologic signature, including increased IgG1 with afucosylated Fc glycans.

View Article and Find Full Text PDF

Disruption of cyclophilin A (CypA)-capsid interactions affects HIV-1 replication in human lymphocytes. To understand this mechanism, we utilize human Jurkat cells, peripheral blood mononuclear cells (PBMCs), and CD4 T cells. Our results show that inhibition of HIV-1 infection caused by disrupting CypA-capsid interactions is dependent on human tripartite motif 5α (TRIM5α), showing that TRIM5α restricts HIV-1 in CD4 T cells.

View Article and Find Full Text PDF

SAMHD1 is a human restriction factor known to prevent infection of macrophages, resting CD4 T cells, and dendritic cells by HIV-1. To test the contribution of MxB to the ability of SAMHD1 to block HIV-1 infection, we created human THP-1 cell lines that were knocked out for expression of MxB, SAMHD1, or both. Interestingly, MxB depletion renders SAMHD1 ineffective against HIV-1 but not SIVmac.

View Article and Find Full Text PDF

SAMHD1 is a dNTP triphosphohydrolase (dNTPase) that impairs retroviral replication in a subset of non-cycling immune cells. Here we show that SAMHD1 is a redox-sensitive enzyme and identify three redox-active cysteines within the protein: C341, C350, and C522. The three cysteines reside near one another and the allosteric nucleotide binding site.

View Article and Find Full Text PDF

Human immunodeficiency virus type 1 (HIV-1) displays the unique ability to infect nondividing cells. The capsid of HIV-1 is the viral determinant for viral nuclear import. To understand the cellular factors involved in the ability of HIV-1 to infect nondividing cells, we sought to find capsid mutations that allow the virus to infect dividing but not nondividing cells.

View Article and Find Full Text PDF

The recent Zika virus (ZIKV) outbreak in Brazil has suggested associations of this virus infection with neurological disorders, including microcephaly in newborn infants and Guillian-Barré syndrome in adults. Previous reports have shown that AXL, a transmembrane receptor tyrosine kinase protein, is essential for ZIKV infection of mammalian cells, but this remains controversial. Here, we have assessed the involvement of AXL in the ability of ZIKV to infect mammalian cells, and also the requirement for endocytosis and acidic pH.

View Article and Find Full Text PDF

SAMHD1, a dNTP triphosphohydrolase, contributes to interferon signaling and restriction of retroviral replication. SAMHD1-mediated retroviral restriction is thought to result from the depletion of cellular dNTP pools, but it remains controversial whether the dNTPase activity of SAMHD1 is sufficient for restriction. The restriction ability of SAMHD1 is regulated in cells by phosphorylation on T592.

View Article and Find Full Text PDF

Background: HIV-1 capsid influences viral uncoating and nuclear import. Some capsid is detected in the nucleus but it is unclear if it has any function. We reported that the antibiotic Coumermycin-A1 (C-A1) inhibits HIV-1 integration and that a capsid mutation confers resistance to C-A1, suggesting that capsid might affect post-nuclear entry steps.

View Article and Find Full Text PDF

The human immunodeficiency virus type 1 (HIV-1) capsid plays crucial roles in HIV-1 replication and thus represents an excellent drug target. We developed a high-throughput screening method based on a time-resolved fluorescence resonance energy transfer (HTS-TR-FRET) assay, using the C-terminal domain (CTD) of HIV-1 capsid to identify inhibitors of capsid dimerization. This assay was used to screen a library of pharmacologically active compounds, composed of 1,280in vivo-active drugs, and identified ebselen [2-phenyl-1,2-benzisoselenazol-3(2H)-one], an organoselenium compound, as an inhibitor of HIV-1 capsid CTD dimerization.

View Article and Find Full Text PDF

Unlabelled: The interferon alpha (IFN-α)-inducible restriction factor MxB blocks HIV-1 infection after reverse transcription but prior to integration. Fate-of-capsid experiments have correlated the ability of MxB to block HIV-1 infection with stabilization of viral cores during infection. We previously demonstrated that HIV-1 restriction by MxB requires capsid binding and oligomerization.

View Article and Find Full Text PDF

Unlabelled: The alpha interferon (IFN-α)-inducible restriction factor myxovirus B (MxB) blocks HIV-1 infection after reverse transcription but prior to integration. MxB binds to the HIV-1 core, which is composed of capsid protein, and this interaction leads to inhibition of the uncoating process of HIV-1. Previous studies suggested that HIV-1 restriction by MxB requires binding to capsid.

View Article and Find Full Text PDF

Background: The recently discovered small-molecule BI-2 potently blocks HIV-1 infection. BI-2 binds to the N-terminal domain of HIV-1 capsid. BI-2 utilizes the same capsid pocket used by the small molecule PF74.

View Article and Find Full Text PDF