Background And Objectives: Deep brain stimulation (DBS) is a well-established surgical treatment for certain movement disorders and involves the implantation of brain electrodes connected to implantable pulse generators (IPGs). As more device manufacturers have entered the market, some IPG technology has been designed to be compatible with brain electrodes from other manufacturers, which has facilitated the hybridization of implant technology. The aim of this study was to assess the benefits of hybridization of non-rechargeable, constant voltage IPGs to rechargeable, constant current IPGs.
View Article and Find Full Text PDFObjective: To determine whether salvage of DBS hardware is beneficial for Parkinson's Disease (PD) patients by looking at follow-up patient's outcomes and satisfaction after their craniotomy operation.
Patients And Methods: This was a retrospective review of a prospective, single-center deep brain stimulation (DBS) database between 2002-2016 identifying patients with PD who developed subdural hematomas (SDH) due to trauma after their DBS surgery. Of the 636 DBS cases that were performed, 3 PD-DBS patients with significant traumatic SDH managed via craniotomy were identified.
Background And Importance: Primary generalized dystonia (PGD) is a genetic form of dystonia that frequently displays pharmacological resistance and progresses quickly after onset. Deep brain stimulation (DBS) has been used successfully to treat refractory dystonia, specifically globus pallidus interna (GPi) DBS for DYT1-positive PGD patients. Long-term follow-up of the safety and efficacy falls short of the longevity seen in other diseases treated with DBS.
View Article and Find Full Text PDFMajor contributions to the understanding of human brain function have come from detailed clinical reports of responses evoked by electrical stimulation and specific brain regions during neurosurgical procedures in awake humans. In this study, microstimulation evoked responses and extracellular unit recordings were obtained intraoperatively in 3 awake patients undergoing bilateral implantation of deep brain stimulation electrodes in the lateral hypothalamus. The microstimulation evoked responses exhibited a clear anatomical distribution.
View Article and Find Full Text PDFThe authors report the case of DYT1-positive primary generalized dystonia refractory to medical management that was successfully treated with continuous deep brain stimulation of the internal segment of the globus pallidus. Prior studies have shown that neuromusculoskeletal deficits can remain permanent if early surgical intervention is not undertaken. The authors report prolonged efficacy and safety over a 10-year period in a 28-year-old man.
View Article and Find Full Text PDFAims: Infection of hardware is a serious complication after deep brain stimulation (DBS), as this may result in additional surgery, cost and loss of treatment benefit for the patient. We report the incidence and management of infections after DBS in a single institution over the past 11 years.
Methods: A database of 270 patients with 484 implants was used in the study.
Object: Deep brain stimulation (DBS) of the ventral intermediate nucleus of the thalamus (VIM) has proven to be efficacious in the treatment of essential tremor (ET). The authors report on long-term follow-up of a series of patients treated at 1 institution by 1 neurosurgeon.
Methods: Thirty-four patients with ET received unilateral or bilateral VIM DBS.
Panic attacks are sudden debilitating attacks of intense distress often accompanied by physical symptoms such as shortness of breath and heart palpitations. Numerous brain regions, hormones, and neurotransmitter systems are putatively involved, but the etiology and neurocircuitry of panic attacks is far from established. One particular brain region of interest is the ventromedial hypothalamus (VMH).
View Article and Find Full Text PDFObjective: To propose a new model of integrated, multidisciplinary postoperative care of the patients with deep brain stimulation (DBS).
Design: Observational cohort study with follow-up at 3 months and 1 year.
Setting: Academic medical center movement disorder clinic.