Research into the disequilibrium of microglial phenotypes has become an area of intense focus in neurodegenerative disease as a potential mechanism that contributes to chronic neuroinflammation and neuronal loss in Parkinson's disease (PD). There is growing evidence that neuroinflammation accompanies and may promote progression of alpha-synuclein (Asyn)-induced nigral dopaminergic (DA) degeneration. From a therapeutic perspective, development of immunomodulatory strategies that dampen overproduction of pro-inflammatory cytokines from chronically activated immune cells and induce a pro-phagocytic phenotype is expected to promote Asyn removal and protect vulnerable neurons.
View Article and Find Full Text PDFResearch into the disequilibrium of microglial phenotypes has become an area of intense focus in neurodegenerative disease as a potential mechanism that contributes to chronic neuroinflammation and neuronal loss in Parkinson's disease (PD). There is growing evidence that neuroinflammation accompanies and may promote progression of alpha-synuclein (Asyn)-induced nigral dopaminergic (DA) degeneration. From a therapeutic perspective, development of immunomodulatory strategies that dampen overproduction of pro-inflammatory cytokines from chronically activated immune cells and induce a pro-phagocytic phenotype is expected to promote Asyn removal and protect vulnerable neurons.
View Article and Find Full Text PDFBackground: Supplemental instruction (SI) is a well-established mode of direct academic support, used in a wide variety of courses. Some reports have indicated that SI and similar peer-led academic support models particularly benefit students identifying with historically underserved racial/ethnic groups in STEM. However, these studies have not explicitly examined the role of prior academic experiences, an important consideration in college success.
View Article and Find Full Text PDFGeorgia Gwinnett College (GGC) is an access institution with a diverse student body, located in metro Atlanta. To strengthen research skills, teach employer-valued cell biology laboratory techniques, and increase student engagement, a semester-long, inquiry-based CURE was developed and implemented in Cell Biology with Laboratory (BIOL3400K), a sophomore-level course, which serves as a "gateway" to all upper-level biology courses. This CURE centers on the investigation of a student-chosen experimental factor on the viability of cultured, mammalian cells.
View Article and Find Full Text PDFNeuromelanin, the polymeric form of dopamine which accumulates in aging neuronal tissue, is increasingly recognized as a functional and critical component of a healthy and active adult human brain. Notorious in plant and insect literature for their ability to bind and retain amines for long periods of time, catecholamine polymers known colloquially as 'melanins' are nevertheless curiously absent from most textbooks regarding biochemistry, neuroscience, and evolution. Recent research has brought attention to the brain pigment due to its possible role in neurodegeneration.
View Article and Find Full Text PDFThe loss of pigmented neurons from the human brain has long been the hallmark of Parkinson's disease (PD). Neuromelanin (NM) in the pre-synaptic terminal of dopamine neurons is emerging as a primary player in the etiology of neurodegenerative disorders including PD. This mini-review discusses the interactions between neuromelanin and different molecules in the synaptic terminal and describes how these interactions might affect neurodegenerative disorders including PD.
View Article and Find Full Text PDFCognitive enhancers that act by increasing glycine transmission might be useful adjuncts to cocaine-cue extinction training to deter relapse. The study investigated the effects of combining treatments of the glycine transporter-1 (GlyT-1) inhibitor, Org24598, with extinction training on the subsequent reacquisition of cocaine self-administration. Squirrel monkeys and rats were trained to self-administer cocaine under a second-order schedule of intravenous drug injection in which responding was maintained by cocaine injections and a cocaine-paired visual stimulus.
View Article and Find Full Text PDFWithin the group I family of metabotropic glutamate receptors (mGluRs), substantial evidence points to a role for mGluR5 mechanisms in cocaine's abuse-related behavioral effects, but less is understood about the contribution of mGluR1, which also belongs to the group I mGluR family. The selective mGluR1 antagonist JNJ16259685 [(3,4-dihydro-2H-pyrano-[2,3-b]quinolin-7-yl)-(cis-4-methoxycyclohexyl)-methanone] was used to investigate the role of mGluR1 in the behavioral effects of cocaine and methamphetamine. In drug discrimination experiments, squirrel monkeys were trained to discriminate cocaine from saline by using a two-lever, food-reinforced operant procedure.
View Article and Find Full Text PDFThe trace amine-associated receptor 1 (TAAR1) is a G protein-coupled receptor that is functionally activated by amphetamine-based psychostimulants, including amphetamine, methamphetamine and MDMA. Previous studies have shown that in transgenic mice lacking the TAAR1 gene (TAAR1 knockout; KO) a single injection of amphetamine can produce enhanced behavioral responses compared to responses evoked in wild-type (WT) mice. Further, the psychostimulant effects of cocaine can be diminished by selective activation of TAAR1.
View Article and Find Full Text PDFDopamine (DA) D3 and D2 receptor mechanisms are implicated in cocaine's abuse-related behavioral effects, but the relative contribution of the two receptor subtypes is only partially characterized. This study investigated the role of D3 and D2 subtype mechanisms by determining the degree to which the D3-preferring antagonist PG01037 [N-{4-[4-(2,3-dichlorophenyl)-piperazin- 1-yl]-trans-but-2-enyl}-4-pyridine-2-yl-benzamide HCl] and the D2-preferring antagonist L-741626 [3-[4-(4-chlorophenyl)-4- hydroxypiperidin-1-yl]methyl-1H-indole] attenuated several behavioral effects of cocaine in squirrel monkeys. Quantitative observational studies established doses of each antagonist that did not produce untoward effects, which were used in subsequent comparisons.
View Article and Find Full Text PDFAugmentation of cue exposure (extinction) therapy with cognitive-enhancing pharmacotherapy may offer an effective strategy to combat cocaine relapse. To investigate this possibility at the preclinical level, rats and squirrel monkeys were trained to self-administer cocaine paired with a brief visual cue. Lever pressing was subsequently extinguished by withholding cocaine injections while maintaining response-contingent presentations of the cue.
View Article and Find Full Text PDFRationale: Dopamine D3 receptor mechanisms have been implicated in the abuse-related behavioral effects of cocaine.
Objectives: The purpose of this study was to investigate the effects of the D3 receptor partial agonist CJB 090 on the discriminative stimulus, reinforcing and priming effects of cocaine in squirrel monkeys. Complementary studies were conducted to compare CJB 090's effects on food-maintained behavior and species-typical unconditioned behaviors.
Rationale: In humans, micro opioid-cocaine combinations (speedballs) have been reported to heighten pleasurable effects and result in greater abuse potential compared to either drug individually. Emerging evidence in animals suggests that the ability of mu opioids to enhance the reinforcing effects of cocaine might be independent of their mu intrinsic efficacy even though mu agonist efficacy appears to be a determinant in the reinforcing effects of micro opioids themselves.
Objectives: This study examined the relationship between agonist efficacy, self-administration, and the enhancement of cocaine self-administration using the high-efficacy mu agonist etonitazene.
Some of the major concerns related to methamphetamine (METH) abuse are the neuronal damage inflicted at dopamine (DA) nerve terminals and the cognitive deficits observed in human METH abusers. We have shown that a high dose of METH selectively depleted dopaminergic markers in striatum, frontal cortex and amygdala of Swiss Webster mice, and impaired learned place preference. In this study, we investigated whether deficits in consolidation of place learning, as a consequence of METH neurotoxicity, underlie the underperformance of cocaine conditioned place preference (CPP).
View Article and Find Full Text PDFThe abuse of substituted amphetamines such as methamphetamine (METH) and 3,4-methylenedioxymethamphetamine (MDMA/Ecstasy) can result in neurotoxicity, manifested as the depletion of dopamine (DA) and 5-hydroxytriptamine (5-HT; serotonin) axon terminal markers in humans and animal models. Human METH and MDMA users exhibit impairments in memory and executive functions, which may be a direct consequence of the neurotoxic potential of amphetamines. The objective of this study was to investigate the influence of amphetamines-induced neurotoxicity on Pavlovian learning.
View Article and Find Full Text PDFMethamphetamine (METH) and 3,4-meythylenedioxymethamphetamine (MDMA; 'ecstasy') are currently major drugs of abuse. One of the major concerns of amphetamines abuse is their potential neurotoxic effect on dopaminergic and serotonergic neurons. Although data from human studies are somewhat limited, compelling evidence suggests that these drugs cause neurotoxicity in rodents and primates.
View Article and Find Full Text PDFAmphetamine analogs such as p-chloroamphetamine (PCA) cause serotonergic and dopaminergic neurotoxicity. The behavioral consequences and the responsiveness to psychostimulants following the neurotoxic insult are unclear. The present study was undertaken to investigate the outcome of neurotoxic and non-neurotoxic PCA pre-treatments on the sensitivity of Swiss Webster mice to the psychomotor stimulating effects of PCA, 3,4-methylenedioxymethamphetamine (MDMA) and cocaine.
View Article and Find Full Text PDF