We demonstrate the ability to extract a spin-entangled state of two neutral atoms via postselection based on a measurement of their spatial configuration. Typically, entangled states of neutral atoms are engineered via atom-atom interactions. In contrast, in our Letter, we use Hong-Ou-Mandel interference to postselect a spin-singlet state after overlapping two atoms in distinct spin states on an effective beam splitter.
View Article and Find Full Text PDFWe demonstrate rapid loading of a small array of optical tweezers with a single ^{87}Rb atom per site. We find that loading efficiencies of up to 90% per tweezer are achievable in less than 170 ms for traps separated by more than 1.7 μm.
View Article and Find Full Text PDFThe realization of superfluidity in a dilute gas of fermionic atoms, analogous to superconductivity in metals, represents a long-standing goal of ultracold gas research. In such a fermionic superfluid, it should be possible to adjust the interaction strength and tune the system continuously between two limits: a Bardeen-Cooper-Schrieffer (BCS)-type superfluid (involving correlated atom pairs in momentum space) and a Bose-Einstein condensate (BEC), in which spatially local pairs of atoms are bound together. This crossover between BCS-type superfluidity and the BEC limit has long been of theoretical interest, motivated in part by the discovery of high-temperature superconductors.
View Article and Find Full Text PDFFollowing the realization of Bose-Einstein condensates in atomic gases, an experimental challenge is the production of molecular gases in the quantum regime. A promising approach is to create the molecular gas directly from an ultracold atomic gas; for example, bosonic atoms in a Bose-Einstein condensate have been coupled to electronic ground-state molecules through photoassociation or a magnetic field Feshbach resonance. The availability of atomic Fermi gases offers the prospect of coupling fermionic atoms to bosonic molecules, thus altering the quantum statistics of the system.
View Article and Find Full Text PDF