Publications by authors named "Cincotti G"

Over the past years, fluorescence microscopy (FM) has steadily progressed in increasing the localization precision of fluorescent emitters in biological samples and led to new claims, whose rigorous validation remains an outstanding problem. We present a novel, to the best of our knowledge, multi-parameter estimation framework that captures the full complexity of a single-emitter FM localization experiment. We showcase our method with Minimum Flux (MINFLUX) microscopy, among the highest-resolution approaches, demonstrating that (i) the localization precision can be increased only by turning the illumination intensity up, thus increasing the risk of photo-bleaching, and it is independent from the beams' separation, and (ii) in presence of background noise, the localization precision decreases with the beams' separation.

View Article and Find Full Text PDF

Infectious diseases are acknowledged as one of the leading causes of death worldwide. Statistics show that the annual death toll caused by bacterial infections has reached 14 million, most of which are caused by drug-resistant strains. Bacterial antibiotic resistance is currently regarded as a compelling problem with dire consequences, which motivates the urgent identification of alternative ways of fighting bacteria.

View Article and Find Full Text PDF

By harnessing the versatility of fluorescence microscopy and super-resolution imaging, bacteriologists explore critical aspects of bacterial physiology and resolve bacterial structures sized beyond the light diffraction limit. These techniques are based on fluorophores with profitable photochemical and tagging properties. The paucity of available far-red (FR)-emitting dyes for bacterial imaging strongly limits the multicolor choice of bacteriologists, hindering the possibility of labeling multiple structures in a single experiment.

View Article and Find Full Text PDF

Gram staining differentiates bacteria as gram-positive and gram-negative, depending on their cell wall constituents, and coloring cells in violet and pink, respectively. Sometimes, a subpopulation of the same bacterial species assumes different colors, ranging from pink to violet, for reasons that are not completely understood yet. We analyze conventional brightfield images and use an automated pipeline to count pink and violet cells.

View Article and Find Full Text PDF

Nanostructures of conventional metals offer manipulation of light at the nanoscale but are largely limited to static behavior due to fixed material properties. To develop the next frontier of dynamic nano-optics and metasurfaces, this study utilizes the redox-tunable optical properties of conducting polymers, as recently shown to be capable of sustaining plasmons in their most conducting oxidized state. Electrically tunable conducting polymer nano-optical antennas are presented, using nanodisks of poly(3,4-ethylenedioxythiophene:sulfate) (PEDOT:Sulf) as a model system.

View Article and Find Full Text PDF

Precise manipulation of light-matter interactions has enabled a wide variety of approaches to create bright and vivid structural colors. Techniques utilizing photonic crystals, Fabry-Pérot cavities, plasmonics, or high-refractive-index dielectric metasurfaces have been studied for applications ranging from optical coatings to reflective displays. However, complicated fabrication procedures for sub-wavelength nanostructures, limited active areas, and inherent absence of tunability of these approaches impede their further development toward flexible, large-scale, and switchable devices compatible with facile and cost-effective production.

View Article and Find Full Text PDF

has emerged as a major bacterial pathogen during the past three decades. The majority of the infections occur in hospitals and are caused by strains endowed with high desiccation tolerance, which represents an essential feature for the adaptation to the nosocomial environment. This work aims at investigating the desiccation response of the multidrug-resistant strain ACICU as a function of the bacterial growth phase and oxygen availability, by correlating bacterial survival with shape alterations.

View Article and Find Full Text PDF

Background: In recent years, a variety of imaging techniques operating at nanoscale resolution have been reported. These techniques have the potential to enrich our understanding of bacterial species relevant to human health, such as antibiotic-resistant pathogens. However, owing to the novelty of these techniques, their use is still confined to addressing very particular applications, and their availability is limited owing to associated costs and required expertise.

View Article and Find Full Text PDF

Super-resolution microscopy techniques can provide answers to still pending questions on prokaryotic organisms but are yet to be used at their full potential for this purpose. To address this, we evaluate the ability of the rhodamine-like KK114 dye to label various types of bacteria, to enable imaging of fine structural details with stimulated emission depletion microscopy (STED). We assessed fluorescent labeling with KK114 for eleven Gram-positive and Gram-negative bacterial species and observed that this contrast agent binds to their cell membranes.

View Article and Find Full Text PDF

We develop a suitable geometrical-optics approach and demonstrate that it is possible to measure the optical density (OD) of bacterial cultures using a light emitting diode (LED)-based photometer. We measure both attenuation and spot-size variation, and we compensate for diffraction and stray-light impairment related to the incoherent source and large detection area. The approach is validated for different concentrations of two bacterial species, and , that present different shapes and clustering organization.

View Article and Find Full Text PDF

A geometrical-optics approach is proposed to increase the accuracy in photometric measurements, using a point-of-care testing (POCT) LED-based sensor. Due to stray-light effects, the measurement accuracy depends on the dimension of the CMOS area, where the radiation is detected. We propose two image processing approaches and evaluate the influence of the sensor area.

View Article and Find Full Text PDF

The genus includes species of opportunistic pathogens and harmless saprophytes. The type species, , is a nosocomial pathogen renowned for being multidrug resistant (MDR). Despite the clinical relevance of infections caused by MDR and a few other spp.

View Article and Find Full Text PDF

A PAM4-OCDM system with optical multi-/demultiplexing and electrical pre-/post-processing is proposed for short-reach applications. We experimentally demonstrate, for the first time, a power-efficient 4 OC x 10 GSymbol/s PAM4-OCDM system. The four PSK-OCs are simultaneously generated using a single light source and a passive multiport optical encoder and received by a single optical decoder and cascaded DSP.

View Article and Find Full Text PDF

We have proposed and experimentally demonstrated all-optical multiplexing (MUX)-format conversion from Nyquist optical time division multiplex (OTDM) to Nyquist wavelength division multiplex (WDM). The system is simply configured with a straight-type phase modulator (PM) driven by a sinusoidal wave and an optical Nyquist filter. In the theoretical investigation, it is proved that the single Nyquist signal is completely converted to Nyquist WDM signal, which consists of two half-baud-rate signals with different carrier frequencies.

View Article and Find Full Text PDF

We report on the transmission experiment of seven 12.5-GHz spaced all optical-orthogonal frequency division multiplexed (AO-OFDM) subcarriers over a 35-km fiber link, using differential quadrature phase shift keying (DQPSK) modulation and direct detection. The system does not require chromatic dispersion compensation, optical time gating at the receiver (RX) or cyclic prefix (CP), achieving the maximum spectral efficiency.

View Article and Find Full Text PDF

Photonic analog-to-digital conversion and optical quantization are demonstrated, based on the spectral shifts of orthogonal frequency division multiplexing subcarriers and a frequency-packed arrayed waveguide grating. The system is extremely low-energy consuming since the spectral shifts are small and generated by cross-phase modulation, using a linear-slope high-speed and low-jitter pulse train generated by a mode locked laser diode. The feasibility of a 2, 3 and 4-bit optical quantization scheme is demonstrated.

View Article and Find Full Text PDF

A novel hybrid all-optical mode-division multiplexing and code division multiplexing architecture for flexible and scalable access networks is presented. We successfully demonstrate, for the first time, an asynchronous on-off keying modulation, 2 mode x 4 code x 10 Gbps transmission over 42-km link, using a set of single-mode and two-mode fibers, without dispersion compensation. The four phase-shift keyed optical codes are generated at a single wavelength, by a multiport encoder/decoder, and we use an optical mode multiplexer/demultiplexer in the remote node and at the central office.

View Article and Find Full Text PDF

We propose and experimentally demonstrate a novel technique for chromatic dispersion (CD) monitoring and adaptive compensation in an 8 x 12.5 Gbit/s all-optical orthogonal frequency-division multiplexing (AO-OFDM) system by using two pilot symbols and a virtually imaged phased array (VIPA) for a tunable CD compensator. The two pilot symbols are added to the first and the last sub-channels of the OFDM signal, and their relative time delay is detected and used for CD estimation at the CD monitoring circuit.

View Article and Find Full Text PDF

We propose for the first time (to the best of our knowledge) and demonstrate a tunable multiple optical code (OC) converter for flexible networks that allows dynamic code (bandwidth) allocation in a way similar to a tunable laser. With respect to other OC converters, this scheme can convert both specific and multiple OCs by changing only the amplifier gain. The proposed scheme uses cross-phase modulation (XPM) and two linear-slope control pulse streams generated by fiber Bragg gratings (FBGs) in the C-band.

View Article and Find Full Text PDF

We experimentally demonstrate an 8 x 12.5 Gbit/s all-optical orthogonal frequency-division multiplexing (AO-OFDM) system using arrayed waveguide gratings (AWGs), which perform discrete Fourier transform (DFT) and inverse DFT (IDFT) of a signal directly in the optical domain. The experimental results show that frequency orthogonality of OFDM sub-channels is degraded in the AWG due to the slab-diffraction effect.

View Article and Find Full Text PDF

The present paper aims to describe other functionalities for an arrayed waveguide grating (AWG)-based device, showing that this widely used configuration can be designed not only to frequency multiplex/demultiplex wavelength division multiplexing (WDM) signals, but also to perform the discrete Fourier transform (DFT) and the discrete fractional Fourier transform (DFrFT) of a signal, in all-optical orthogonal frequency division multiplexing (OFDM) systems. In addition 1 × N and N × N phased array switches architectures are described, as well as a new configuration to perform polarization diversity demultiplexing. Finally, a general approach, based on an analogy with the finite impulse response (FIR) filter approach, is presented to design optical modulators for any modulation format, using either phase modulators (PM) or electro-absorption modulators (EAM).

View Article and Find Full Text PDF

We propose a novel receiver configuration using an extreme narrow band-optical band pass filter (ENB-OBPF) to reduce the multiple access interference (MAI) and beat noises in an optical code division multiplexing (OCDM) transmission. We numerically and experimentally demonstrate an enhancement of the code detectability, that allows us to increase the number of users in a passive optical network (PON) from 4 to 8 without any forward error correction (FEC).

View Article and Find Full Text PDF

We have developed a new 8-chip, 320 Gchip/s encoder/decoder with eight input/output ports, that can be used in 40-Gb/s PON networks. The device has been to multiplex four asynchronous 40 Gb/s users, using DPSK modulation. The transmission over 50 km has been successfully demonstrated for the first time.

View Article and Find Full Text PDF

A twofold generalization of the optical schemes that perform the discrete Fourier transform (DFT) is given: new passive planar architectures are presented where the 2 × 2 3 dB couplers are replaced by M × M hybrids, reducing the number of required connections and phase shifters. Furthermore, the planar implementation of the discrete fractional Fourier transform (DFrFT) is also described, with a waveguide grating router (WGR) configuration and a properly modified slab coupler.

View Article and Find Full Text PDF