Background: The discovery of stable, yet functional, protein mutants is a limiting factor in the development of biotechnological applications, structural studies or in drug discovery. Rapid detection of functional mutants is especially challenging for water channel aquaporins, as they do not have a directly measurable enzymatic or binding activity. Current methods available are time consuming and only applicable to specific aquaporins.
View Article and Find Full Text PDFActa Crystallogr F Struct Biol Commun
December 2014
Aquaporin water channels (AQPs) are found in almost every organism from humans to bacteria. In humans, 13 classes of AQPs control water and glycerol homeostasis. Knockout studies have suggested that modulating the activity of AQPs could be beneficial for the treatment of several pathologies.
View Article and Find Full Text PDFThe small hydrophobic (SH) protein is encoded by the human respiratory syncytial virus. Its absence leads to viral attenuation in the context of whole organisms, and it prevents apoptosis in infected cells. Herein, we have examined the structure of SH protein in detergent micelles and in lipid bilayers, by solution NMR and attenuated total reflection-Fourier transform infrared spectroscopy, respectively.
View Article and Find Full Text PDF