Chemoresistance is a major obstacle in the clinical management of metastatic, castration-resistant prostate cancer (PCa). It is imperative to develop novel strategies to overcome chemoresistance and improve clinical outcomes in patients who have failed chemotherapy. Using a two-tier phenotypic screening platform, we identified bromocriptine mesylate as a potent and selective inhibitor of chemoresistant PCa cells.
View Article and Find Full Text PDFOxidative stress is increased in several cancers including prostate cancer, and is currently being exploited in cancer therapy to induce ferroptosis, a novel nonapoptotic form of cell death. High mobility group A2 (HMGA2), a non-histone protein up-regulated in several cancers, can be truncated due to chromosomal rearrangement or alternative splicing of HMGA2 gene. The purpose of this study is to investigate the role of wild-type vs.
View Article and Find Full Text PDFCannabis sativa (cannabis) has been used as a therapeutic treatment for centuries treating various diseases and disorders. However, racial propaganda led to the criminalization of cannabis in the 1930s preventing opportunities to explore marijuana in therapeutic development. The increase in recreational use of cannabis further grew concern about abuse, and lead to further restrictions and distribution of cannabis in the 1970s when it was declared to be a Schedule I drug in the USA.
View Article and Find Full Text PDFInt J Environ Res Public Health
December 2022
Funded by the National Institutes of Health (NIH), the Research Centers in Minority Institutions (RCMI) Program fosters the development and implementation of innovative research aimed at improving minority health and reducing or eliminating health disparities. Currently, there are 21 RCMI Specialized (U54) Centers that share the same framework, comprising four required core components, namely the Administrative, Research Infrastructure, Investigator Development, and Community Engagement Cores. The Research Infrastructure Core (RIC) is fundamentally important for biomedical and health disparities research as a critical function domain.
View Article and Find Full Text PDFInt J Environ Res Public Health
June 2021
This paper details U.S. Research Centers in Minority Institutions (RCMI) Community Engagement Cores (CECs): (1) unique and cross-cutting components, focus areas, specific aims, and target populations; and (2) approaches utilized to build or sustain trust towards community participation in research.
View Article and Find Full Text PDFInadequate nutrient intake leads to oxidative stress disrupting homeostasis, activating signaling, and altering metabolism. Oxidative stress serves as a hallmark in developing prostate lesions, and an aggressive cancer phenotype activating mechanisms allowing cancer cells to adapt and survive. It is unclear how adaptation and survival are facilitated; however, literature across several organisms demonstrates that a reversible cellular growth arrest and the transcription factor, nuclear factor-kappaB (NF-κB), contribute to cancer cell survival and therapeutic resistance under oxidative stress.
View Article and Find Full Text PDFPeroxidasin (PXDN), a human homolog of PXDN, belongs to the family of heme peroxidases and has been found to promote oxidative stress in cardiovascular tissue, however, its role in prostate cancer has not been previously elucidated. We hypothesized that PXDN promotes prostate cancer progression via regulation of metabolic and oxidative stress pathways. We analyzed PXDN expression in prostate tissue by immunohistochemistry and found increased PXDN expression with prostate cancer progression as compared to normal tissue or cells.
View Article and Find Full Text PDFG-protein-coupled receptor (GPCR) heterodimerization has emerged as a means by which alternative signaling entities can be created; yet, how receptor heterodimers affect receptor pharmacology remains unknown. Previous observations suggested a biochemical antagonism between GPCRs, CXCR4 and CB2 (CNR2), where agonist-bound CXCR4 and agonist-bound CB2 formed a physiologically nonfunctional heterodimer on the membrane of cancer cells, inhibiting their metastatic potential However, the reduced signaling entities responsible for the observed functional outputs remain elusive. This study now delineates the signaling mechanism whereby heterodimeric association between CXCR4 and CB2, induced by simultaneous agonist treatment, results in decreased CXCR4-mediated cell migration, invasion, and adhesion through inhibition of the Gα13/RhoA signaling axis.
View Article and Find Full Text PDFJ Biol Chem
May 2016
The G-protein-coupled chemokine receptor CXCR4 generates signals that lead to cell migration, cell proliferation, and other survival mechanisms that result in the metastatic spread of primary tumor cells to distal organs. Numerous studies have demonstrated that CXCR4 can form homodimers or can heterodimerize with other G-protein-coupled receptors to form receptor complexes that can amplify or decrease the signaling capacity of each individual receptor. Using biophysical and biochemical approaches, we found that CXCR4 can form an induced heterodimer with cannabinoid receptor 2 (CB2) in human breast and prostate cancer cells.
View Article and Find Full Text PDFCamalexin, the phytoalexin produced in the model plant Arabidopsis thaliana, possesses antiproliferative and cancer chemopreventive effects. We have demonstrated that the cytostatic/cytotoxic effects of camalexin on several prostate cancer (PCa) cells are due to oxidative stress. Lysosomes are vulnerable organelles to Reactive Oxygen Species (ROS)-induced injuries, with the potential to initiate and or facilitate apoptosis subsequent to release of proteases such as cathepsin D (CD) into the cytosol.
View Article and Find Full Text PDFOxidative stress and the accumulation of reactive oxygen species (ROS) play a role in cancer cells developing an advanced, phenotypic signature that associates with metastasis and progression. Increased ROS concentrations are involved in promoting cancer development and metastasis by inducing expression of oncogenes, suppressing activity of anti-survival molecules and by activating various cell survival and proliferation signaling pathways. Oxidative stress is higher in the epithelium of cancer patients than patients without the disease, and antioxidant trials are currently being explored as a therapeutic option.
View Article and Find Full Text PDFBackground: Bone marrow stromal cell (BMSC) paracrine factor(s) can induce apoptosis in bone metastatic prostate cancer (PCa) cell lines. However, the PCa cells that escape BMSC-induced apoptosis can upregulate cytoprotective autophagy.
Methods: C4-2, C4-2B, MDA PCa 2a, MDA PCa 2b, VCaP, PC3, or DU145 PCa cell lines were grown in BMSC conditioned medium and analyzed for mRNA and/or protein accumulation of p62 (also known as sequestome-1/SQSTM1), Microtubule-associated protein 1 light chain 3B (LC3B), or lysosomal-associated membrane protein 1 (LAMP1) using quantitative polymerase chain reaction (QPCR), Western blot, or immunofluorescence.
Reactive oxygen species (ROS) are implicated in many human diseases, including cancer. We have previously demonstrated that ROS increased the expression and activity of the chemokine receptor, CXCR4, which enhanced metastatic functions in prostate cancer cells. Studies have also revealed that CXCR4 and its ligand, SDF-1α, promoted ROS accumulation; however the source of ROS was not investigated.
View Article and Find Full Text PDFThe G-protein coupled receptor (GPCR), Cysteine (C)-X-C Receptor 4 (CXCR4), plays an important role in prostate cancer metastasis. CXCR4 is generally regarded as a plasma membrane receptor where it transmits signals that support transformation, progression and eventual metastasis. Due to the central role of CXCR4 in tumorigenesis, therapeutics approaches such as antagonist and monoclonal antibodies have focused on receptors that exist on the plasma membrane.
View Article and Find Full Text PDFReactive oxygen species (ROS) play a central role in oxidative stress, which leads to the onset of diseases, such as cancer. Furthermore, ROS contributes to the delicate balance between tumor cell survival and death. However, the mechanisms by which tumor cells decide to elicit survival or death signals during oxidative stress are not completely understood.
View Article and Find Full Text PDFCamalexin is a phytoalexin that accumulates in various cruciferous plants upon exposure to environmental stress and plant pathogens. Besides moderate antibacterial and antifungal activity, camalexin was reported to also exhibit antiproliferative and cancer chemopreventive effects in breast cancer and leukemia. We studied the cytotoxic effects of camalexin treatment on prostate cancer cell lines and whether this was mediated by reactive oxygen species (ROS) generation.
View Article and Find Full Text PDFSince its discovery, the tumor suppressor phosphatase and tensin homolog (PTEN) has become a molecule with a wide spectrum of functions, which is typically meditated through its lipid phosphatase activity; however, PTEN also functions in a phosphatase-independent manner. It is well established that PTEN regulates several signaling pathways, such as phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT), janus kinase (JAK)/signal transducers and activators of transcription (STAT), focal adhesion kinase (FAK), and more recent, extracellular signal-regulated kinase (ERK)1/2, where activation of these pathways typically leads to cancer development and progression. In regard to most of these pathways, the underlining molecular mechanism of PTEN-mediated regulation is well established, but not so much for the ERK1/2 pathway.
View Article and Find Full Text PDFBiochem Biophys Res Commun
July 2011
Inactivation of the tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is heavily implicated in the tumorigenesis of prostate cancer. Conversely, the upregulation of the chemokine (CXC) receptor 4 (CXCR4) is associated with prostate cancer progression and metastasis. Studies have shown that loss of PTEN permits CXCR4-mediated functions in prostate cancer cells.
View Article and Find Full Text PDFLoss of PTEN is frequently observed in androgen-independent prostate cancer, resulting in the deregulation of metastatic events. SDF1α activation of CXCR4 induces signaling pathways that have been implicated in prostate metastasis and progression to an advanced disease. The pathways of CXCR4 and PTEN converge, leading to the promotion and regulation of tumorigenesis, respectively.
View Article and Find Full Text PDFClin Exp Metastasis
February 2010
Breast cancer is the most common malignancy and second leading cause of cancer death in women. Ninety percent of mortality in breast cancer is often associated with metastatic progression or relapse in patients. Critical stages in the development of aggressive breast cancer include the growth of primary tumors and their ability to spread to foreign organs and form metastases, as well as the establishment of an independent blood supply within the new tumors.
View Article and Find Full Text PDFMetastasis contributes to more than 90% of mortality in breast cancer. Critical stages in the development of aggressive breast cancer include growth of the primary tumours, and their abilities to spread to distant organs, colonize and establish an independent blood supply. The integrin family of cell adhesion receptors is essential to breast cancer progression.
View Article and Find Full Text PDFBackground: While vascular endothelial growth factor (VEGF) expression in breast tumors has been correlated with a poor outcome in the pathogenesis of breast cancer, the expression, localization, and function of VEGF receptors VEGFR1 (also known as FLT1) and VEGFR2 (also known as KDR or FLK1), as well as neuropilin 1 (NRP1), in breast cancer are controversial.
Methods And Findings: We investigated the expression and function of VEGF and VEGF receptors in breast cancer cells. We observed that VEGFR1 expression was abundant, VEGFR2 expression was low, and NRP1 expression was variable.
Signaling pathways involved in regulating nuclear-cytoplasmic distribution of BRCA1 have not been previously reported. Here, we provide evidence that heregulin beta1-induced activation of the Akt pathway increases the nuclear content of BRCA1. First, treatment of T47D breast cancer cells with heregulin beta1 results in a two-fold increase in nuclear BRCA1 as assessed by FACS analysis, immunoblotting and immunofluorescence.
View Article and Find Full Text PDF